

 Back to Doc.qt.io

 Contact Us
 Blog
 Download Qt

 	

	

	
 Archives

 Qt 6.8.0 ('dev' branch)

 	

 Reference

 	

 All Qt C++ Classes

	

 All QML Types

	

 All Qt Modules

	

 All Qt Reference Pages

	

 Getting Started

 	

 Introduction to Qt

	

 Getting Started

	

 Examples and Tutorials

	

 Supported Platforms

	

 What's new in Qt 6

	

 Qt Licensing

	

 Overviews

 	

 Development Tools

	

 User Interfaces

	

 Core Internals

	

 Data Input Output

	

 Networking and Connectivity

	

 Graphics

	

 Mobile Development

	

 QML Applications

	

 Platform Integration

	

 All Qt Overviews

 	Qt 6.8
	Qt WebEngine
	QML Types
	WebEngineView

WebEngineView QML Type

A WebEngineView renders web content within a QML application. More...

	 Import Statement:	 import QtWebEngine
	 Since:	 QtWebEngine 1.0
	 Inherits:	 Item

	List of all members, including inherited members
	Deprecated members

Properties

	ErrorDomain : enumeration
	Feature : enumeration
	FindFlags : enumeration
	JavaScriptConsoleMessageLevel : enumeration
	LifecycleState : enumeration (since QtWebEngine 1.10)
	LoadStatus : enumeration
	PrintedPageOrientation : enumeration (since QtWebEngine 1.3)
	PrintedPageSizeId : enumeration (since QtWebEngine 1.3)
	RenderProcessTerminationStatus : enumeration (since QtWebEngine 1.2)
	WebAction : enumeration (since QtWebEngine 1.2)
	activeFocusOnPress : bool (since QtWebEngine 1.2)
	audioMuted : bool (since QtWebEngine 1.3)
	backgroundColor : color (since QtWebEngine 1.2)
	canGoBack : bool
	canGoForward : bool
	contentsSize : size (since QtWebEngine 1.3)
	devToolsId : WebEngineView (since QtWebEngine 6.6)
	devToolsView : WebEngineView (since QtWebEngine 1.7)
	history : WebEngineHistory (since QtWebEngine 1.1)
	icon : url
	inspectedView : WebEngineView (since QtWebEngine 1.7)
	isFullScreen : bool (since QtWebEngine 1.1)
	lifecycleState : LifecycleState (since QtWebEngine 1.10)
	loadProgress : int
	loading : bool
	profile : WebEngineProfile (since QtWebEngine 1.1)
	recentlyAudible : bool (since QtWebEngine 1.3)
	recommendedState : LifecycleState (since QtWebEngine 1.10)
	renderProcessPid : qint64 (since QtWebEngine 1.11)
	scrollPosition : point (since QtWebEngine 1.3)
	settings : WebEngineSettings (since QtWebEngine 1.1)
	title : string
	touchHandleDelegate : Component (since QtWebEngine 6.4)
	url : url
	userScripts : WebEngineScriptCollection (since QtWebEngine 1.1)
	webChannel : QQmlWebChannel (since QtWebEngine 1.1)
	webChannelWorld : int (since QtWebEngine 1.3)
	zoomFactor : real (since QtWebEngine 1.1)

Signals

	activeFocusOnPressChanged(bool activeFocusOnPress) (since QtWebEngine 1.2)
	audioMutedChanged(bool muted) (since QtWebEngine 1.3)
	authenticationDialogRequested(AuthenticationDialogRequest request) (since QtWebEngine 1.4)
	backgroundColorChanged() (since QtWebEngine 1.2)
	certificateError(WebEngineCertificateError error) (since QtWebEngine 1.1)
	colorDialogRequested(ColorDialogRequest request) (since QtWebEngine 1.4)
	contextMenuRequested(ContextMenuRequest request) (since QtWebEngine 1.4)
	featurePermissionRequested(url securityOrigin, Feature feature) (since QtWebEngine 1.1)
	fileDialogRequested(FileDialogRequest request) (since QtWebEngine 1.4)
	findTextFinished(FindTextResult result) (since QtWebEngine 1.10)
	fullScreenRequested(FullScreenRequest request) (since QtWebEngine 1.1)
	geometryChangeRequested(rect geometry, rect frameGeometry) (since QtWebEngine 1.7)
	javaScriptConsoleMessage(JavaScriptConsoleMessageLevel level, string message, int lineNumber, string sourceID)
	javaScriptDialogRequested(JavaScriptDialogRequest request) (since QtWebEngine 1.4)
	linkHovered(url hoveredUrl)
	loadingChanged(WebEngineLoadingInfo loadingInfo)
	navigationRequested(WebEngineNavigationRequest request)
	newWindowRequested(WebEngineNewWindowRequest request) (since QtWebEngine 2.0)
	pdfPrintingFinished(string filePath, bool success) (since QtWebEngine 1.5)
	printRequested() (since QtWebEngine 1.8)
	recentlyAudibleChanged(bool recentlyAudible) (since QtWebEngine 1.3)
	registerProtocolHandlerRequested(RegisterProtocolHandlerRequest request) (since QtWebEngine 1.7)
	renderProcessPidChanged(qint64 pid) (since QtWebEngine 1.11)
	renderProcessTerminated(RenderProcessTerminationStatus terminationStatus, int exitCode) (since QtWebEngine 1.2)
	selectClientCertificate(WebEngineClientCertificateSelection clientCertificateSelection) (since QtWebEngine 1.9)
	tooltipRequested(TooltipRequest request) (since QtWebEngine 1.10)
	touchSelectionMenuRequested(TouchSelectionMenuRequest *request) (since QtWebEngine 6.3)
	wasRecentlyAudibleChanged(bool wasRecentlyAudible) (since QtWebEngine 1.3)
	webAuthUxRequested(QWebEngineWebAuthUxRequest *request) (since QtWebEngine 6.7)
	windowCloseRequested() (since QtWebEngine 1.2)

Methods

	void acceptAsNewWindow(QWebEngineNewWindowRequest *request) (since QtWebEngine 2.0)
	WebEngineAction action(WebAction action)
	void findText(string subString) (since QtWebEngine 1.1)
	void findText(string subString, FindFlags options) (since QtWebEngine 1.1)
	void findText(string subString, FindFlags options, variant resultCallback) (since QtWebEngine 1.1)
	void fullScreenCancelled() (since QtWebEngine 1.1)
	void goBack()
	void goBackOrForward(int offset) (since QtWebEngine 1.1)
	void goForward()
	void grantFeaturePermission(url securityOrigin, Feature feature, bool granted) (since QtWebEngine 1.1)
	void loadHtml(string html, url baseUrl)
	void printToPdf(const string filePath, PrintedPageSizeId pageSizeId, PrintedPageOrientation orientation) (since QtWebEngine 1.3)
	void printToPdf(variant resultCallback, PrintedPageSizeId pageSizeId, PrintedPageOrientation orientation) (since QtWebEngine 1.3)
	void reload()
	void reloadAndBypassCache() (since QtWebEngine 1.1)
	void replaceMisspelledWord(const QString &replacement) (since QtWebEngine 1.3)
	void runJavaScript(string script, variant callback)
	void save(const QString &filePath, QWebEngineDownloadRequest::SavePageFormat format) (since QtWebEngine 6.6)
	void setActiveFocusOnPress(bool arg) (since QtWebEngine 1.2)
	void stop()
	void triggerWebAction(WebAction action) (since QtWebEngine 1.2)

Detailed Description

The WebEngineView type enables QML applications to render regions of dynamic web content. It may share the screen with other QML types, such as a TabView, or fill the screen, as specified within the QML application.

Initializing Web Engine

For the web engine view to be rendered, the web engine must be initialized by using QtWebEngineQuick::initialize in the application main source file, as illustrated by the following code snippet:

int main(int argc, char *argv[])
{
 QCoreApplication::setAttribute(Qt::AA_ShareOpenGLContexts);
 QtWebEngineQuick::initialize();
 QGuiApplication app(argc, argv);
 QQmlApplicationEngine engine;
 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));
 return app.exec();
}

Loading Web Pages

An application can load pages into the WebEngineView, using either the url property or the loadHtml method and navigate within the view's session history. The GET method is always used to load URLs.

The history is represented by a WebEngineHistory data model that is held by the history property.

The following sample QML application loads a web page using the url property:

import QtQuick
import QtQuick.Window
import QtWebEngine

Window {
 width: 1024
 height: 750
 visible: true
 WebEngineView {
 anchors.fill: parent
 url: "https://www.qt.io"
 }
}

The loading property holds whether an HTML page is currently loading. The loadingChanged() signal is emitted when loading the page begins, ends, or fails.

The title of an HTML page can be accessed with the title property. Additionally, a web page may specify an icon, which can be accessed using the icon property. The zoomFactor property enables zooming the contents of the web page by a scale factor.

If a certificate error is raised while loading a web page, the certificateError() signal is emitted. Certificate errors are handled by using the methods of the WebEngineCertificateError type.

Interaction

By default, links to different pages load within the same WebEngineView object, but web sites may request them to be opened as a new tab, window, or dialog. The newWindowRequested() signal is emitted when a request to load the page in a separate web engine view is issued. The NewViewDestination property describes how the new view should be opened. In addition, the WebEngineNewWindowRequest utility type can be used to load web pages in separate web engine views.

The findText() method can be used to search for a string on a web page, using the options described by FindFlags.

The setActiveFocusOnPress() method can be used to create a UI element that should not get focus on press. This can be useful in a hybrid UI.

The focusOnNavigationEnabled setting can be used to make the view automatically receive focus when a navigation operation occurs (like loading or reloading a page or navigating through history).

The linkHovered() signal is emitted when a mouse pointer passes over a link and thus corresponds to the mouseover DOM event.

Actions, such as selecting and editing content, can be performed on a web page by using the triggerWebAction() method. The available actions are described by the WebAction property.

The backgroundColorChanged() signal is emitted when the web page background color changes.

User Scripts

During the loading of a page, so called user scripts can be injected in the JavaScript engine at different points. The script objects attached to the web engine view are held by the userScripts property and injected by using the WebEngineScript type. Scripts can also be run by using the runJavaScript() method in the same world as other scripts that are part of the loaded site.

The webChannel property can be used to expose a WebChannel instance in the JavaScript context of the page it is rendering as qt.webChannelTransport.

Fullscreen Mode

A web page can request through the JavaScript API to be loaded in fullscreen mode. The fullScreenRequested() signal is emitted when the web page issues the request. The FullScreenRequest utility type can be used to toggle fullscreen requests. The fullScreenCancelled method can be used to notify the browser engine when the windowing system forces the application to leave fullscreen mode.

Profiles

Web engine views can be isolated from each other by using the WebEngineProfile type. A profile contains settings, scripts, and the list of visited links shared by all views that belong to the profile. For example, a dedicated profile could be created for a private browsing mode. The current profile for the view is held by the profile property and the current settings are held by the settings property. The settings are specified by using the WebEngineSettings type.

Platform Features

Web pages can request access to platform features, such as geolocation or audio and video capture devices. The featurePermissionRequested() signal is emitted when a web page requests to make use of a resource. The supported platform features are described by the Feature property. If users grant the permission, the grantFeaturePermission() method is used to set it to granted.

Rendering to OpenGL Surface

When using a QQuickRenderControl to render a Qt Quick user interface to an OpenGL surface, the WebEngineView type is not rendered correctly. The web engine view attempts to use a global OpenGL context created by QtWebEngineQuick::initialize, but there is no public API for accessing that context in order to share it with the QQuickRenderControl context.

To have the web engine view rendered correctly, it is possible to manually create a new offscreen context that is shared with the QQuickRenderControl and to call the non-public function qt_gl_set_global_share_context(), rather than calling initialize(). If initialize() is called after setting a global context, it will do nothing.

Property Documentation

	
ErrorDomain : enumeration

Describes various high-level error types:

	Constant	Description
	WebEngineView.NoErrorDomain	
	WebEngineView.InternalErrorDomain	Content fails to be interpreted by Qt WebEngine.
	WebEngineView.ConnectionErrorDomain	Error results from faulty network connection.
	WebEngineView.CertificateErrorDomain	Error related to the SSL/TLS certificate.
	WebEngineView.HttpErrorDomain	Error related to the HTTP connection.
	WebEngineView.FtpErrorDomain	Error related to the FTP connection.
	WebEngineView.DnsErrorDomain	Error related to the DNS connection.

	
Feature : enumeration

Describes the platform feature access categories that the user may be asked to grant or deny access to:

	Constant	Description
	WebEngineView.Geolocation	Location hardware or service.
	WebEngineView.MediaAudioCapture	Audio capture devices, such as microphones.
	WebEngineView.MediaVideoCapture	Video devices, such as cameras.
	WebEngineView.MediaAudioVideoCapture	Both audio and video capture devices.
	DesktopVideoCapture	Video output capture, that is, the capture of the user's display. (Added in Qt 5.10)
	DesktopAudioVideoCapture	Both audio and video output capture. (Added in Qt 5.10)
	WebEnginView.Notifications	Web notifications for the end-user.

See also featurePermissionRequested() and grantFeaturePermission().

	
FindFlags : enumeration

Describes the options available to the findText() function. The options can be OR-ed together from the following list:

	Constant	Description
	WebEngineView.FindBackward	Searches backwards instead of forwards.
	WebEngineView.FindFlags	FindCaseSensitively By default findText() works case insensitive. Specifying this option changes the behavior to a case sensitive find operation.

See also findText().

	
JavaScriptConsoleMessageLevel : enumeration

Indicates the severity of a JavaScript console message:

	Constant	Description
	WebEngineView.InfoMessageLevel	Message is purely informative and can safely be ignored.
	WebEngineView.WarningMessageLevel	Message indicates there might be a problem that may need attention.
	WebEngineView.ErrorMessageLevel	Message indicates there has been an error.

	
LifecycleState : enumeration [since QtWebEngine 1.10]

This enum describes the lifecycle state of the page:

	Constant	Description
	WebEngineView.LifecycleState.Active	Normal state.
	WebEngineView.LifecycleState.Frozen	Low CPU usage state where most HTML task sources are suspended.
	WebEngineView.LifecycleState.Discarded	Very low resource usage state where the entire browsing context is discarded.

This property was introduced in QtWebEngine 1.10.

See also lifecycleState, Page Lifecycle API, and WebEngine Lifecycle Example.

	
LoadStatus : enumeration

Reflects a page's load status:

	Constant	Description
	WebEngineView.LoadStartedStatus	Page is currently loading.
	WebEngineView.LoadStoppedStatus	Loading the page was stopped by the stop() method or by the loader code or network stack in Chromium.
	WebEngineView.LoadSucceededStatus	Page has successfully loaded, and is not currently loading.
	WebEngineView.LoadFailedStatus	Page has failed to load, and is not currently loading.

	
PrintedPageOrientation : enumeration [since QtWebEngine 1.3]

Describes the orientation of a PDF document that gets created from the WebEngineView's contents. The enumeration values are mapped from and must match QPageLayout::Orientation.

	Constant	Description
	WebEngineView.Portrait	The document will be created using portrait orientation.
	WebEngineView.Landscape	The document will be created using landscape orientation.

This property was introduced in QtWebEngine 1.3.

See also WebEngineView::printToPdf().

	
PrintedPageSizeId : enumeration [since QtWebEngine 1.3]

This enum type lists the available page sizes as defined in the Postscript PPD standard.

The enumeration values are mapped from and must match QPageSize::PageSizeId. They are also duplicated in QPagedPaintDevice and QPrinter.

The defined sizes are:

	Constant	Description
	WebEngineView.A0	841 x 1189 mm
	WebEngineView.A1	594 x 841 mm
	WebEngineView.A2	420 x 594 mm
	WebEngineView.A3	297 x 420 mm
	WebEngineView.A4	210 x 297 mm, 8.26 x 11.69 inches
	WebEngineView.A5	148 x 210 mm
	WebEngineView.A6	105 x 148 mm
	WebEngineView.A7	74 x 105 mm
	WebEngineView.A8	52 x 74 mm
	WebEngineView.A9	37 x 52 mm
	WebEngineView.B0	1000 x 1414 mm
	WebEngineView.B1	707 x 1000 mm
	WebEngineView.B2	500 x 707 mm
	WebEngineView.B3	353 x 500 mm
	WebEngineView.B4	250 x 353 mm
	WebEngineView.B5	176 x 250 mm, 6.93 x 9.84 inches
	WebEngineView.B6	125 x 176 mm
	WebEngineView.B7	88 x 125 mm
	WebEngineView.B8	62 x 88 mm
	WebEngineView.B9	44 x 62 mm
	WebEngineView.B10	31 x 44 mm
	WebEngineView.C5E	163 x 229 mm
	WebEngineView.Comm10E	105 x 241 mm, U.S. Common 10 Envelope
	WebEngineView.DLE	110 x 220 mm
	WebEngineView.Executive	7.5 x 10 inches, 190.5 x 254 mm
	WebEngineView.Folio	210 x 330 mm
	WebEngineView.Ledger	431.8 x 279.4 mm
	WebEngineView.Legal	8.5 x 14 inches, 215.9 x 355.6 mm
	WebEngineView.Letter	8.5 x 11 inches, 215.9 x 279.4 mm
	WebEngineView.Tabloid	279.4 x 431.8 mm
	WebEngineView.Custom	Unknown, or a user defined size.
	WebEngineView.A10	
	WebEngineView.A3Extra	
	WebEngineView.A4Extra	
	WebEngineView.A4Plus	
	WebEngineView.A4Small	
	WebEngineView.A5Extra	
	WebEngineView.B5Extra	
	WebEngineView.JisB0	
	WebEngineView.JisB1	
	WebEngineView.JisB2	
	WebEngineView.JisB3	
	WebEngineView.JisB4	
	WebEngineView.JisB5	
	WebEngineView.JisB6	
	WebEngineView.JisB7	
	WebEngineView.JisB8	
	WebEngineView.JisB9	
	WebEngineView.JisB10	
	WebEngineView.AnsiA	= Letter
	WebEngineView.AnsiB	= Ledger
	WebEngineView.AnsiC	
	WebEngineView.AnsiD	
	WebEngineView.AnsiE	
	WebEngineView.LegalExtra	
	WebEngineView.LetterExtra	
	WebEngineView.LetterPlus	
	WebEngineView.LetterSmall	
	WebEngineView.TabloidExtra	
	WebEngineView.ArchA	
	WebEngineView.ArchB	
	WebEngineView.ArchC	
	WebEngineView.ArchD	
	WebEngineView.ArchE	
	WebEngineView.Imperial7x9	
	WebEngineView.Imperial8x10	
	WebEngineView.Imperial9x11	
	WebEngineView.Imperial9x12	
	WebEngineView.Imperial10x11	
	WebEngineView.Imperial10x13	
	WebEngineView.Imperial10x14	
	WebEngineView.Imperial12x11	
	WebEngineView.Imperial15x11	
	WebEngineView.ExecutiveStandard	
	WebEngineView.Note	
	WebEngineView.Quarto	
	WebEngineView.Statement	
	WebEngineView.SuperA	
	WebEngineView.SuperB	
	WebEngineView.Postcard	
	WebEngineView.DoublePostcard	
	WebEngineView.Prc16K	
	WebEngineView.Prc32K	
	WebEngineView.Prc32KBig	
	WebEngineView.FanFoldUS	
	WebEngineView.FanFoldGerman	
	WebEngineView.FanFoldGermanLegal	
	WebEngineView.EnvelopeB4	
	WebEngineView.EnvelopeB5	
	WebEngineView.EnvelopeB6	
	WebEngineView.EnvelopeC0	
	WebEngineView.EnvelopeC1	
	WebEngineView.EnvelopeC2	
	WebEngineView.EnvelopeC3	
	WebEngineView.EnvelopeC4	
	WebEngineView.EnvelopeC5	= C5E
	WebEngineView.EnvelopeC6	
	WebEngineView.EnvelopeC65	
	WebEngineView.EnvelopeC7	
	WebEngineView.EnvelopeDL	= DLE
	WebEngineView.Envelope9	
	WebEngineView.Envelope10	= Comm10E
	WebEngineView.Envelope11	
	WebEngineView.Envelope12	
	WebEngineView.Envelope14	
	WebEngineView.EnvelopeMonarch	
	WebEngineView.EnvelopePersonal	
	WebEngineView.EnvelopeChou3	
	WebEngineView.EnvelopeChou4	
	WebEngineView.EnvelopeInvite	
	WebEngineView.EnvelopeItalian	
	WebEngineView.EnvelopeKaku2	
	WebEngineView.EnvelopeKaku3	
	WebEngineView.EnvelopePrc1	
	WebEngineView.EnvelopePrc2	
	WebEngineView.EnvelopePrc3	
	WebEngineView.EnvelopePrc4	
	WebEngineView.EnvelopePrc5	
	WebEngineView.EnvelopePrc6	
	WebEngineView.EnvelopePrc7	
	WebEngineView.EnvelopePrc8	
	WebEngineView.EnvelopePrc9	
	WebEngineView.EnvelopePrc10	
	WebEngineView.EnvelopeYou4	
	WebEngineView.LastPageSize	= EnvelopeYou4

This property was introduced in QtWebEngine 1.3.

See also WebEngineView::printToPdf().

	
RenderProcessTerminationStatus : enumeration [since QtWebEngine 1.2]

Describes the status with which the render process terminated:

	Constant	Description
	WebEngineView.NormalTerminationStatus	The render process terminated normally.
	WebEngineView.AbnormalTerminationStatus	The render process terminated with a non-zero exit status.
	WebEngineView.CrashedTerminationStatus	The render process crashed, for example because of a segmentation fault.
	WebEngineView.KilledTerminationStatus	The render process was killed, for example by SIGKILL or task manager kill.

This property was introduced in QtWebEngine 1.2.

	
WebAction : enumeration [since QtWebEngine 1.2]

Describes the types of action that can be performed on a web page:

	Constant	Description
	WebEngineView.NoWebAction	No action is triggered.
	WebEngineView.Back	Navigate back in the history of navigated links.
	WebEngineView.Forward	Navigate forward in the history of navigated links.
	WebEngineView.Stop	Stop loading the current page.
	WebEngineView.Reload	Reload the current page.
	WebEngineView.ReloadAndBypassCache	Reload the current page, but do not use any local cache.
	WebEngineView.Cut	Cut the content currently selected into the clipboard.
	WebEngineView.Copy	Copy the content currently selected into the clipboard.
	WebEngineView.Paste	Paste content from the clipboard.
	WebEngineView.Undo	Undo the last editing action.
	WebEngineView.Redo	Redo the last editing action.
	WebEngineView.SelectAll	Select all content. This action is only enabled when the page's content is focused. The focus can be forced by the JavaScript window.focus() call, or the focusOnNavigationEnabled setting should be enabled to get automatic focus.
	WebEngineView.PasteAndMatchStyle	Paste content from the clipboard with current style.
	WebEngineView.OpenLinkInThisWindow	Open the current link in the current window. (Added in Qt 5.6)
	WebEngineView.OpenLinkInNewWindow	Open the current link in a new window. Requires a handler for the newWindowRequested() signal. (Added in Qt 5.6)
	WebEngineView.OpenLinkInNewTab	Open the current link in a new tab. Requires a handler for the newWindowRequested() signal. (Added in Qt 5.6)
	WebEngineView.CopyLinkToClipboard	Copy the current link to the clipboard. (Added in Qt 5.6)
	WebEngineView.CopyImageToClipboard	Copy the clicked image to the clipboard. (Added in Qt 5.6)
	WebEngineView.CopyImageUrlToClipboard	Copy the clicked image's URL to the clipboard. (Added in Qt 5.6)
	WebEngineView.CopyMediaUrlToClipboard	Copy the hovered audio or video's URL to the clipboard. (Added in Qt 5.6)
	WebEngineView.ToggleMediaControls	Toggle between showing and hiding the controls for the hovered audio or video element. (Added in Qt 5.6)
	WebEngineView.ToggleMediaLoop	Toggle whether the hovered audio or video should loop on completetion or not. (Added in Qt 5.6)
	WebEngineView.ToggleMediaPlayPause	Toggle the play/pause state of the hovered audio or video element. (Added in Qt 5.6)
	WebEngineView.ToggleMediaMute	Mute or unmute the hovered audio or video element. (Added in Qt 5.6)
	WebEngineView.DownloadLinkToDisk	Download the current link to the disk. To implement download actions, connect to the WebEngineProfile.downloadRequested signal. (Added in Qt 5.6)
	WebEngineView.DownloadImageToDisk	Download the highlighted image to the disk. (Added in Qt 5.6)
	WebEngineView.DownloadMediaToDisk	Download the hovered audio or video to the disk. (Added in Qt 5.6)
	WebEngineView.InspectElement	Trigger any attached Web Inspector to inspect the highlighed element. (Added in Qt 5.6)
	WebEngineView.ExitFullScreen	Exit the fullscreen mode. (Added in Qt 5.6)
	WebEngineView.SavePage	Save the current web page to disk. (Added in Qt 5.7)
	WebEngineView.ViewSource	Show the source of the current page in a new tab. Requires a handler for the newWindowRequested() signal. (Added in Qt 5.8)
	WebEngineView.ToggleBold	Toggles boldness for the selection or at the cursor position. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.ToggleItalic	Toggles italics for the selection or at the cursor position. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.ToggleUnderline	Toggles underlining of the selection or at the cursor position. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.ToggleStrikethrough	Toggles striking through the selection or at the cursor position. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.AlignLeft	Aligns the lines containing the selection or the cursor to the left. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.AlignCenter	Aligns the lines containing the selection or the cursor at the center. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.AlignRight	Aligns the lines containing the selection or the cursor to the right. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.AlignJustified	Stretches the lines containing the selection or the cursor so that each line has equal width. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.Indent	Indents the lines containing the selection or the cursor. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.Outdent	Outdents the lines containing the selection or the cursor. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.InsertOrderedList	Inserts an ordered list at the current cursor position, deleting the current selection. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.InsertUnorderedList	Inserts an unordered list at the current cursor position, deleting the current selection. Requires contenteditable="true". (Added in Qt 5.10)
	WebEngineView.ChangeTextDirectionLTR	Changes text direction to left-to-right in the focused input element. (Added in Qt 6.6)
	WebEngineView.ChangeTextDirectionRTL	Changes text direction to right-to-left in the focused input element. (Added in Qt 6.6)

This property was introduced in QtWebEngine 1.2.

	
activeFocusOnPress : bool [since QtWebEngine 1.2]

Specifies whether the view should gain active focus when pressed. The default value is true.

This property was introduced in QtWebEngine 1.2.

	
audioMuted : bool [since QtWebEngine 1.3]

The state of whether the current page audio is muted.

This property was introduced in QtWebEngine 1.3.

See also recentlyAudible.

	
backgroundColor : color [since QtWebEngine 1.2]

Changes the color of the WebEngineView's background, behind the document's body. Can be set to "transparent" or to a translucent color to see through the document or to match the web content in a hybrid app to prevent the white flashes that may appear during loading.

The default value is white.

This property was introduced in QtWebEngine 1.2.

	
canGoBack : bool [read-only]

Returns true if there are prior session history entries, false otherwise.

	
canGoForward : bool [read-only]

Returns true if there are subsequent session history entries, false otherwise.

	
contentsSize : size [read-only, since QtWebEngine 1.3]

Size of the page contents.

This property was introduced in QtWebEngine 1.3.

	
devToolsId : WebEngineView [read-only, since QtWebEngine 6.6]

The id of the developer tools host associated with this page.

If remote debugging is enabled (see Qt WebEngine Developer Tools), the id can be used to build the URL to connect to the developer tool websocket: ws://localhost:<debugggin-port>/devtools/page/<id>). The websocket can be used to to interact with the page using the DevTools Protocol.

This property was introduced in QtWebEngine 6.6.

	
devToolsView : WebEngineView [since QtWebEngine 1.7]

The view currently hosting the developer tools for this view. Setting it to a new view will navigate that view to an internal URL with the developer tools, and bind it to this view.

This property was introduced in QtWebEngine 1.7.

See also inspectedView.

	
history : WebEngineHistory [read-only, since QtWebEngine 1.1]

The navigation history of the current view.

This property was introduced in QtWebEngine 1.1.

See also WebEngineHistory.

	
icon : url [read-only]

An internal URL for accessing the currently displayed web site icon, also known as favicon or shortcut icon. This read-only URL corresponds to the image used within a mobile browser application to represent a bookmarked page on the device's home screen.

The following snippet uses the icon property to build an Image component:

Image {
 id: appIcon
 sourceSize: Qt.size(32, 32)
 source: webView.icon != "" ? webView.icon : "fallbackFavicon.png";
 // ...
}

Specifying the Image::sourceSize property informs the Qt WebEngine's favicon provider about the requested size and resizes the icon to it. If Image::sourceSize property is not specified, the provider provides the icon with the largest available resolution.

	
inspectedView : WebEngineView [since QtWebEngine 1.7]

The view this view is currently inspecting, if any. Setting it will navigate to an internal URL with the developer tools of the view set.

It is recommended to unset this property when developer tools are not visible; otherwise some debug information may appear in the inspected WebEngineView.

This property was introduced in QtWebEngine 1.7.

See also devToolsView.

	
isFullScreen : bool [read-only, since QtWebEngine 1.1]

Returns true if the web view is in fullscreen mode, false otherwise.

This property was introduced in QtWebEngine 1.1.

See also fullScreenRequested() and fullScreenCancelled().

	
lifecycleState : LifecycleState [since QtWebEngine 1.10]

The current lifecycle state of the page.

The following restrictions are enforced by the setter:

	A visible page must remain in the Active state.
	If the page is being inspected by a devToolsView then both pages must remain in the Active states.
	A page in the Discarded state can only transition to the Active state. This will cause a reload of the page.

These are the only hard limits on the lifecycle state, but see also recommendedState for the recommended soft limits.

This property was introduced in QtWebEngine 1.10.

See also recommendedState, Page Lifecycle API, and WebEngine Lifecycle Example.

	
loadProgress : int [read-only]

The amount of data from the page that has been loaded, expressed as an integer percentage in the range from 0 to 100.

	
loading : bool [read-only]

Returns true if the HTML page is currently loading, false otherwise.

	
profile : WebEngineProfile [since QtWebEngine 1.1]

The current profile used for the view.

This property was introduced in QtWebEngine 1.1.

See also WebEngineProfile.

	
recentlyAudible : bool [read-only, since QtWebEngine 1.3]

Returns the current page's audible state (audio was recently played, or not).

This property was introduced in QtWebEngine 1.3.

See also audioMuted and recentlyAudibleChanged.

	
recommendedState : LifecycleState [read-only, since QtWebEngine 1.10]

The recommended limit for the lifecycle state of the page.

Setting the lifecycle state to a lower resource usage state than the recommended state may cause side-effects such as stopping background audio playback or loss of HTML form input. Setting the lifecycle state to a higher resource state is however completely safe.

This property was introduced in QtWebEngine 1.10.

See also lifecycleState, Page Lifecycle API, and WebEngine Lifecycle Example.

	
renderProcessPid : qint64 [read-only, since QtWebEngine 1.11]

Returns the process ID (PID) of the render process assigned to the current page's main frame.

If no render process is available yet, 0 is returned.

This property was introduced in QtWebEngine 1.11.

See also renderProcessPidChanged.

	
scrollPosition : point [read-only, since QtWebEngine 1.3]

Scroll position of the page contents.

This property was introduced in QtWebEngine 1.3.

	
settings : WebEngineSettings [read-only, since QtWebEngine 1.1]

Settings used by this view.

This property was introduced in QtWebEngine 1.1.

See also WebEngineSettings.

	
title : string [read-only]

The title of the currently displayed HTML page. This is a read-only value that reflects the contents of the <title> tag.

	
touchHandleDelegate : Component [since QtWebEngine 6.4]

The touchHandleDelegate provides a template defining visual touch handles instantiated by the view whenever touch selection handling is required.

The handle's position, opacity, and visibility are updated automatically. The delegate should be a QML Item or any QML type which inherits it.

Note: If no QML Item is set, the default touch handles will be shown.

The following code uses a custom touch handle delegate:

WebEngineView {
// ...
 touchHandleDelegate: Rectangle {
 color: "red"
 }
 // ...
}

The touch handles can be also switched dynamically:

 Component {
 id: circleTouchHandle
 Rectangle {
 color: "blue"
 radius: 50
 }
}
function showDefaultHandle(isDefault) {
 if (isDefault)
 webEngineView.touchHandleDelegate = circleTouchHandle
 else
 webEngineView.touchHandleDelegate = null
}

Note: If no delegate is provided, Chromium's default touch handles will appear.

This property was introduced in QtWebEngine 6.4.

	
url : url

The location of the currently displayed HTML page. This writable property offers the main interface to load a page into a web view. It functions the same as the window.location DOM property.

See also loadHtml().

	
userScripts : WebEngineScriptCollection [read-only, since QtWebEngine 1.1]

The user scripts' collection associated with the view.

This property was introduced in QtWebEngine 1.1.

See also WebEngineScriptCollection.

	
webChannel : QQmlWebChannel [since QtWebEngine 1.1]

The web channel instance used by this view. This channel is automatically using the internal QtWebEngine transport mechanism over Chromium IPC, and exposed in the javascript context of the page it is rendering as qt.webChannelTransport. This transport object is used when instantiating the JavaScript counterpart of QWebChannel using the Qt WebChannel JavaScript API.

Note: The view does not take ownership for an assigned webChannel object.

This property was introduced in QtWebEngine 1.1.

	
webChannelWorld : int [since QtWebEngine 1.3]

JavaScript world that the web channel instance used by this view is installed in. The world must be a number between 0 and 256.

This property was introduced in QtWebEngine 1.3.

	
zoomFactor : real [since QtWebEngine 1.1]

Zoom factor for the view. Valid values are within the range from 0.25 to 5.0. The default factor is 1.0.

This property was introduced in QtWebEngine 1.1.

Signal Documentation

	
[since QtWebEngine 1.2] activeFocusOnPressChanged(bool activeFocusOnPress)

This signal is emitted when the value of activeFocusOnPress changes. It specifies whether the view should gain active focus when pressed.

Note: The corresponding handler is onActiveFocusOnPressChanged.

This signal was introduced in QtWebEngine 1.2.

See also activeFocusOnPress and setActiveFocusOnPress().

	
[since QtWebEngine 1.3] audioMutedChanged(bool muted)

This signal is emitted when the value of muted changes. The value is specified using the audioMuted property.

Note: Not to be confused with a specific HTML5 audio / video element being muted.

Note: The corresponding handler is onAudioMutedChanged.

This signal was introduced in QtWebEngine 1.3.

See also audioMuted and recentlyAudibleChanged.

	
[since QtWebEngine 1.4] authenticationDialogRequested(AuthenticationDialogRequest request)

This signal is emitted when an authentication dialog is requested.

The request can be handled by using the methods of the AuthenticationDialogRequest type.

Note: Signal handlers need to call request.accepted = true to prevent a default dialog from showing up. Make sure to call either AuthenticationDialogRequest::dialogAccept() or AuthenticationDialogRequest::dialogReject() afterwards.

Note: The corresponding handler is onAuthenticationDialogRequested.

This signal was introduced in QtWebEngine 1.4.

	
[since QtWebEngine 1.2] backgroundColorChanged()

This signal is emitted when the web engine view background color changes.

Note: The corresponding handler is onBackgroundColorChanged.

This signal was introduced in QtWebEngine 1.2.

	
[since QtWebEngine 1.1] certificateError(WebEngineCertificateError error)

This signal is emitted when an invalid certificate error, error, is raised while loading a given request.

The certificate error can be handled by using the methods of the WebEngineCertificateError type.

Note: The corresponding handler is onCertificateError.

This signal was introduced in QtWebEngine 1.1.

	
[since QtWebEngine 1.4] colorDialogRequested(ColorDialogRequest request)

This signal is emitted when a color picker dialog is requested.

The request can be handled by using the methods of the ColorDialogRequest type.

Note: Signal handlers need to call request.accepted = true to prevent a default dialog from showing up. Make sure to call either ColorDialogRequest::dialogAccept() or ColorDialogRequest::dialogReject() afterwards.

Note: The corresponding handler is onColorDialogRequested.

This signal was introduced in QtWebEngine 1.4.

	
[since QtWebEngine 1.4] contextMenuRequested(ContextMenuRequest request)

This signal is emitted when a context menu is requested.

The request can be handled by using the properties of the ContextMenuRequest type.

Note: Signal handlers need to call request.accepted = true to prevent a default context menu from showing up.

Note: The corresponding handler is onContextMenuRequested.

This signal was introduced in QtWebEngine 1.4.

	
[since QtWebEngine 1.1] featurePermissionRequested(url securityOrigin, Feature feature)

This signal is emitted when the web site identified by securityOrigin requests to make use of the resource or device identified by feature.

Note: The corresponding handler is onFeaturePermissionRequested.

This signal was introduced in QtWebEngine 1.1.

See also grantFeaturePermission().

	
[since QtWebEngine 1.4] fileDialogRequested(FileDialogRequest request)

This signal is emitted when a file picker dialog is requested.

The request can be handled by using the methods of the FileDialogRequest type.

Note: Signal handlers need to call request.accepted = true to prevent a default dialog from showing up. Make sure to call either FileDialogRequest::dialogAccept() or FileDialogRequest::dialogReject() afterwards.

Note: The corresponding handler is onFileDialogRequested.

This signal was introduced in QtWebEngine 1.4.

	
[since QtWebEngine 1.10] findTextFinished(FindTextResult result)

This signal is emitted when a string search on a page is completed. result is the result of the string search.

Note: The corresponding handler is onFindTextFinished.

This signal was introduced in QtWebEngine 1.10.

See also findText() and FindTextResult.

	
[since QtWebEngine 1.1] fullScreenRequested(FullScreenRequest request)

This signal is emitted when the web page issues the request for fullscreen mode through the JavaScript API.

Note: The corresponding handler is onFullScreenRequested.

This signal was introduced in QtWebEngine 1.1.

See also isFullScreen.

	
[since QtWebEngine 1.7] geometryChangeRequested(rect geometry, rect frameGeometry)

This signal is emitted whenever the document wants to change the position and size of the page to frameGeometry. This can happen for example through JavaScript.

While frameGeometry includes, geometry excludes the size of frame margins.

Note: Geometry related properties of QML Window expect a size excluding the window decoration. You have to use geometry to handle this signal correctly.

onGeometryChangeRequested: {
 window.x = geometry.x
 window.y = geometry.y
 window.width = geometry.width
 window.height = geometry.height
}

Note: The corresponding handler is onGeometryChangeRequested.

This signal was introduced in QtWebEngine 1.7.

	
javaScriptConsoleMessage(JavaScriptConsoleMessageLevel level, string message, int lineNumber, string sourceID)

This signal is emitted when a JavaScript program tries to print a message to the web browser's console.

For example, in case of evaluation errors the source URL may be provided in sourceID as well as the lineNumber.

level indicates the severity of the event that triggered the message, that is, whether it was triggered by an error or a less severe event.

If no handler is specified, the view will log the messages into a js logging category.

Note: The corresponding handler is onJavaScriptConsoleMessage.

See also Console Logging.

	
[since QtWebEngine 1.4] javaScriptDialogRequested(JavaScriptDialogRequest request)

This signal is emitted when a JavaScript dialog is requested.

The request can be handled by using the methods of the JavaScriptDialogRequest type.

Note: Signal handlers need to call request.accepted = true to prevent a default dialog from showing up. Make sure to call either JavaScriptDialogRequest::dialogAccept() or JavaScriptDialogRequest::dialogReject() afterwards.

Note: The corresponding handler is onJavaScriptDialogRequested.

This signal was introduced in QtWebEngine 1.4.

	
linkHovered(url hoveredUrl)

Within a mouse-driven interface, this signal is emitted when a mouse pointer passes over a link, corresponding to the mouseover DOM event. This event may also occur in touch interfaces for mouseover events that are not cancelled with preventDefault(). hoveredUrl provides the link's location.

Note: The corresponding handler is onLinkHovered.

	
loadingChanged(WebEngineLoadingInfo loadingInfo)

This signal is emitted when a page load begins, ends, or fails.

When handling the signal with onLoadingChanged, various read-only parameters are available on the WebEngineLoadingInfo specified by loadingInfo.

Note: The corresponding handler is onLoadingChanged.

See also loading, LoadStatus, and ErrorDomain.

	
navigationRequested(WebEngineNavigationRequest request)

This signal is emitted when the navigation request request is issued.

Note: The corresponding handler is onNavigationRequested.

	
[since QtWebEngine 2.0] newWindowRequested(WebEngineNewWindowRequest request)

This signal is emitted when request is issued to load a page in a separate web engine view. This can either be because the current page requested it explicitly through a JavaScript call to window.open, or because the user clicked on a link while holding Shift, Ctrl, or a built-in combination that triggers the page to open in a new window.

The signal is handled by calling acceptAsNewWindow() on the destination view. If this signal is not handled, the requested load will fail.

An example implementation:

QtObject {
 id: windowParent
 // Create the initial browsing windows and open the startup page.
 Component.onCompleted: {
 var firstWindow = windowComponent.createObject(windowParent);
 firstWindow.webView.loadHtml('<input type="button" value="Click!" onclick="window.open("http://qt.io")">');
 }

 property Component windowComponent: Window {
 // Destroy on close to release the Window's QML resources.
 // Because it was created with a parent, it won't be garbage-collected.
 onClosing: destroy()
 visible: true

 property WebEngineView webView: webView_
 WebEngineView {
 id: webView_
 anchors.fill: parent

 // Handle the signal. Dynamically create the window and
 // use its WebEngineView as the destination of our request.
 onNewWindowRequested: function(request) {
 var newWindow = windowComponent.createObject(windowParent);
 newWindow.webView.acceptAsNewWindow(request);
 }
 }
 }
}

Note: The corresponding handler is onNewWindowRequested.

This signal was introduced in QtWebEngine 2.0.

See also WebEngineNewWindowRequest and WebEngine Quick Nano Browser.

	
[since QtWebEngine 1.5] pdfPrintingFinished(string filePath, bool success)

This signal is emitted when printing the web page into a PDF file has finished. filePath will contain the path the file was requested to be created at, and success will be true if the file was successfully created and false otherwise.

Note: The corresponding handler is onPdfPrintingFinished.

This signal was introduced in QtWebEngine 1.5.

See also printToPdf().

	
[since QtWebEngine 1.8] printRequested()

This signal is emitted when the JavaScript window.print() method is called or the user pressed the print button of PDF viewer plugin. Typically, the signal handler can simply call printToPdf().

Note: The corresponding handler is onPrintRequested.

This signal was introduced in QtWebEngine 1.8.

See also printToPdf.

	
[since QtWebEngine 1.3] recentlyAudibleChanged(bool recentlyAudible)

This signal is emitted when the page's audible state, specified by recentlyAudible, is changed, due to audio being played or stopped.

Note: The signal is also emitted when the audioMuted property changes. Also if the audio is paused, this signal is emitted with an approximate two-second delay, from the moment the audio is paused.

If a web page contains two videos that are started in sequence, this signal gets emitted only once, for the first video to generate sound. After both videos are stopped, the signal is emitted upon the last sound generated. This means that the signal is emitted both when any kind of sound is generated and when everything is completely silent within a web page, regardless of the number of audio streams.

Spurious signal emissions might also happen. For example, when sound is stopped, this signal gets emitted first with a value of true, and then with a value of false. Further, when audio starts playing, the signal is emitted twice with a value of true.

Note: The corresponding handler is onRecentlyAudibleChanged.

This signal was introduced in QtWebEngine 1.3.

See also recentlyAudible.

	
[since QtWebEngine 1.7] registerProtocolHandlerRequested(RegisterProtocolHandlerRequest request)

This signal is emitted when the web page tries to register a custom protocol by issuing a registerProtocolHandler request.

Note: The corresponding handler is onRegisterProtocolHandlerRequested.

This signal was introduced in QtWebEngine 1.7.

See also RegisterProtocolHandlerRequest.

	
[since QtWebEngine 1.11] renderProcessPidChanged(qint64 pid)

If no render process is available yet, 0 is returned. This signal is emitted when pid (process ID) of the page's underlying render process changed.

Note: The corresponding handler is onRenderProcessPidChanged.

This signal was introduced in QtWebEngine 1.11.

See also renderProcessPid.

	
[since QtWebEngine 1.2] renderProcessTerminated(RenderProcessTerminationStatus terminationStatus, int exitCode)

This signal is emitted when the render process is terminated with a non-zero exit status. terminationStatus is the termination status of the process and exitCode is the status code with which the process terminated.

Note: The corresponding handler is onRenderProcessTerminated.

This signal was introduced in QtWebEngine 1.2.

See also RenderProcessTerminationStatus.

	
[since QtWebEngine 1.9] selectClientCertificate(WebEngineClientCertificateSelection clientCertificateSelection)

This signal is emitted when a web site requests an SSL client certificate, and one or more were found in the system's client certificate store.

Handling the signal is asynchronous, and loading will be waiting until a certificate is selected, or the last copy of clientCertificateSelection is destroyed.

If the signal is not handled, clientCertificateSelection is automatically destroyed, and loading will continue without a client certificate.

Note: The corresponding handler is onSelectClientCertificate.

This signal was introduced in QtWebEngine 1.9.

See also WebEngineClientCertificateSelection.

	
[since QtWebEngine 1.10] tooltipRequested(TooltipRequest request)

This signal is emitted when the web page sends a request to show a tooltip at a specified position.

Note: Signal handlers need to call request.accepted = true to prevent a default tooltip from showing up.

Note: The corresponding handler is onTooltipRequested.

This signal was introduced in QtWebEngine 1.10.

See also TooltipRequest.

	
[since QtWebEngine 6.3] touchSelectionMenuRequested(TouchSelectionMenuRequest *request)

This signal is emitted when a touch selection menu is requested at a specified position.

The request can be handled by using the methods of the TouchSelectionMenuRequest type.

Note: Signal handlers need to call request.accepted = true to prevent a default touch selection menu from showing up.

Note: The corresponding handler is onTouchSelectionMenuRequested.

This signal was introduced in QtWebEngine 6.3.

See also TouchSelectionMenuRequest.

	
[since QtWebEngine 1.3] wasRecentlyAudibleChanged(bool wasRecentlyAudible)

This signal is emitted when the page's audible state, specified by wasRecentlyAudible, is changed, due to audio being played or stopped.

Note: The signal is also emitted when calling the setAudioMuted method.

Note: The corresponding handler is onWasRecentlyAudibleChanged.

This signal was introduced in QtWebEngine 1.3.

	
[since QtWebEngine 6.7] webAuthUxRequested(QWebEngineWebAuthUxRequest *request)

This signal is emitted when a WebAuth authenticator requires user interaction during the authentication process. These requests are handled by displaying a dialog to the user.

The request contains the information and API required to complete the WebAuth UX request.

Note: The corresponding handler is onWebAuthUxRequested.

This signal was introduced in QtWebEngine 6.7.

See also QWebEngineWebAuthUxRequest.

	
[since QtWebEngine 1.2] windowCloseRequested()

This signal is emitted whenever the page requests the web browser window to be closed, for example through the JavaScript window.close() call.

Note: The corresponding handler is onWindowCloseRequested.

This signal was introduced in QtWebEngine 1.2.

Method Documentation

	
[since QtWebEngine 2.0] void acceptAsNewWindow(QWebEngineNewWindowRequest *request)

Handle the newWindowRequested signal by opening the request in this view.

This method was introduced in QtWebEngine 2.0.

See also newWindowRequested.

	
WebEngineAction action(WebAction action)

Returns a WebEngineAction for the specified WebAction action. WebEngineView also takes care of implementing the action, so that upon triggering the corresponding action is performed on the view.

var copyAction = webEngineView.action(WebEngineView.Copy);

See also WebEngineAction.

	
[since QtWebEngine 1.1] void findText(string subString)

Finds the specified string, subString, in the page. The findTextFinished() signal is emitted when a string search is completed.

To clear the search highlight, just pass an empty string.

This method was introduced in QtWebEngine 1.1.

See also findTextFinished().

	
[since QtWebEngine 1.1] void findText(string subString, FindFlags options)

Finds the specified string, subString, in the page, using the given options. The findTextFinished() signal is emitted when a string search is completed.

To clear the search highlight, just pass an empty string.

findText("Qt", WebEngineView.FindBackward | WebEngineView.FindCaseSensitively);

This method was introduced in QtWebEngine 1.1.

See also findTextFinished().

	
[since QtWebEngine 1.1] void findText(string subString, FindFlags options, variant resultCallback)

Finds the specified string, subString, in the page, using the given options. The findTextFinished() signal is emitted when a string search is completed.

To clear the search highlight, just pass an empty string.

The resultCallback must take an integer parameter. It will be called with the number of found occurrences of the subString.

findText("Qt", WebEngineView.FindCaseSensitively, function(matchCount) {
 if (matchCount > 0)
 console.log("'Qt' tokens found:", matchCount);
});

This method was introduced in QtWebEngine 1.1.

See also findTextFinished().

	
[since QtWebEngine 1.1] void fullScreenCancelled()

Immediately sets isFullScreen property to false. It can be used to notify the browser engine when the windowing system forces the application to leave fullscreen mode.

ApplicationWindow {
 onVisibilityChanged: {
 if (webEngineView.isFullScreen && visibility != Window.FullScreen)
 webEngineView.fullScreenCancelled()
 }

 WebEngineView {
 id: webEngineView
 // ...
 }
}

This method was introduced in QtWebEngine 1.1.

See also isFullScreen and fullScreenRequested().

	
void goBack()

Go backward within the browser's session history, if possible. This function is equivalent to the window.history.back() DOM method.

See also canGoBack.

	
[since QtWebEngine 1.1] void goBackOrForward(int offset)

If offset is positive, goes forward the specified number of offset pages in the current session history. If offset is negative, it goes back. If the offset is invalid, the page is not changed.

This method was introduced in QtWebEngine 1.1.

See also goBack() and goForward().

	
void goForward()

Go forward within the browser's session history, if possible. This function is equivalent to the window.history.forward() DOM method.

	
[since QtWebEngine 1.1] void grantFeaturePermission(url securityOrigin, Feature feature, bool granted)

Sets or unsets the permission, depending on granted, for the web site identified by securityOrigin to use feature.

This method was introduced in QtWebEngine 1.1.

See also featurePermissionRequested().

	
void loadHtml(string html, url baseUrl)

Loads the specified html as the content of the web view.

This method offers a lower-level alternative to the url property, which references HTML pages via URL.

baseUrl is optional and used to resolve relative URLs in the document, such as referenced images or stylesheets. For example, if html is retrieved from http://www.example.com/documents/overview.html, which is the base URL, then an image referenced with the relative URL, diagram.png, should be at http://www.example.com/documents/diagram.png.

See also url.

	
[since QtWebEngine 1.3] void printToPdf(const string filePath, PrintedPageSizeId pageSizeId, PrintedPageOrientation orientation)

Prints the WebEngineView's current content to a PDF document and stores it under filePath. The document's size will be determined by the value of pageSizeId and its orientation will be determined using orientation.

This method issues an asynchronous request for printing the web page into a PDF and returns immediately. To be informed about the result of the request, connect to the signal pdfPrintingFinished().

If you leave out pageSizeId, it defaults to A4. If you leave out orientation, it defaults to Portrait.

This method was introduced in QtWebEngine 1.3.

See also pdfPrintingFinished().

	
[since QtWebEngine 1.3] void printToPdf(variant resultCallback, PrintedPageSizeId pageSizeId, PrintedPageOrientation orientation)

Prints the WebEngineView's current content to a PDF document and returns it in a byte array. The document's size will be determined by the value of pageSizeId and its orientation will be determined using orientation.

The resultCallback must take a string parameter. This string will contain the document's data upon successful printing and an empty string otherwise.

If you leave out pageSizeId, it defaults to A4. If you leave out orientation, it defaults to Portrait.

This method was introduced in QtWebEngine 1.3.

	
void reload()

Reloads the current page. This function is equivalent to the window.location.reload() DOM method.

See also reloadAndBypassCache().

	
[since QtWebEngine 1.1] void reloadAndBypassCache()

Reloads the current page, ignoring any cached content.

This method was introduced in QtWebEngine 1.1.

See also reload().

	
[since QtWebEngine 1.3] void replaceMisspelledWord(const QString &replacement)

Replace the current misspelled word with replacement.

This method was introduced in QtWebEngine 1.3.

	
void runJavaScript(string script, variant callback)

Runs the specified script in the content of the web view.

The callback parameter is optional. If a callback function is provided, it will be invoked after the script finishes running.

runJavaScript("document.title", function(result) { console.log(result); });

Only plain data can be returned from JavaScript as the result value. Supported data types include all of the JSON data types as well as, for example, Date and ArrayBuffer. Unsupported data types include, for example, Function and Promise.

The script will run in the same world as other scripts that are part of the loaded site.

Warning: Do not execute lengthy routines in the callback function, because it might block the rendering of the web content.

For more information about injecting scripts, see Script Injection. For an alternative way to inject scripts, see WebEngineView::userScripts.

	
[since QtWebEngine 6.6] void save(const QString &filePath, QWebEngineDownloadRequest::SavePageFormat format)

Save the current web page to disk.

The web page is saved to filePath in the specified format.

This is a shortcut for the following actions:

	Trigger the Save web action.
	Accept the next download item and set the specified file path and save format.

This function issues an asynchronous download request for the web page and returns immediately.

This method was introduced in QtWebEngine 6.6.

See also QWebEngineDownloadRequest::SavePageFormat.

	
[since QtWebEngine 1.2] void setActiveFocusOnPress(bool arg)

Sets active focus to a clicked web engine view if arg is true. By setting it to false, a web engine view can be used to create a UI element that should not get focus. This can be useful in a hybrid UI.

This method was introduced in QtWebEngine 1.2.

See also activeFocusOnPress, activeFocusOnPressChanged, and WebEngineSettings::focusOnNavigationEnabled.

	
void stop()

Stops loading the current page.

	
[since QtWebEngine 1.2] void triggerWebAction(WebAction action)

Triggers the web action action.

This method was introduced in QtWebEngine 1.2.

See also WebAction.

© 2024 The Qt Company Ltd.
 Documentation contributions included herein are the copyrights of
 their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries
 worldwide. All other trademarks are property of their respective owners.

 Contents

 	Properties

	Signals

	Methods

	Detailed Description

	Initializing Web Engine

	Loading Web Pages

	Interaction

	User Scripts

	Fullscreen Mode

	Profiles

	Platform Features

	Rendering to OpenGL Surface

 Contact Us

 	
 Company
 	About Us
	Investors
	Newsroom
	Careers
	Office Locations

	
 Licensing
 	Terms & Conditions
	Open Source
	FAQ

	
 Support
 	Support Services
	Professional Services
	Partners
	Training

	
 For Customers
 	Support Center
	Downloads
	Qt Login
	Contact Us
	Customer Success

	
 Community
 	Contribute to Qt
	Forum
	Wiki
	Downloads
	Marketplace

 	Sign In
	Feedback
	© 2024 The Qt Company

