

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 Qt for Python

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 Qt for Python

 	Quick start
	Commercial Use
	Getting Started
	Modules APIToggle navigation of Modules API
	Qt Modules Supported by Qt for PythonToggle navigation of Qt Modules Supported by Qt for Python
	PySide6.Qt3DAnimation
	PySide6.Qt3DCore
	PySide6.Qt3DExtras
	PySide6.Qt3DInput
	PySide6.Qt3DLogic
	PySide6.Qt3DRender
	PySide6.QtAsyncio
	PySide6.QtBluetooth
	PySide6.QtCharts
	PySide6.QtConcurrent
	PySide6.QtCore
	PySide6.QtDBus
	PySide6.QtDesigner
	PySide6.QtGraphs
	PySide6.QtGui
	PySide6.QtHelp
	PySide6.QtHttpServer
	PySide6.QtLocation
	PySide6.QtMultimedia
	PySide6.QtMultimediaWidgets
	PySide6.QtNetwork
	PySide6.QtNetworkAuth
	PySide6.QtNfc
	PySide6.QtOpenGL
	PySide6.QtOpenGLWidgets
	PySide6.QtPdf
	PySide6.QtPdfWidgets
	PySide6.QtPositioning
	PySide6.QtPrintSupport
	PySide6.QtQml
	PySide6.QtQuick
	PySide6.QtQuick3D
	PySide6.QtQuickControls2
	PySide6.QtQuickTest
	PySide6.QtQuickWidgets
	PySide6.QtRemoteObjects
	PySide6.QtScxml
	PySide6.QtSensors
	PySide6.QtSerialBus
	PySide6.QtSerialPort
	PySide6.QtSpatialAudio
	PySide6.QtSql
	PySide6.QtStateMachine
	PySide6.QtSvg
	PySide6.QtSvgWidgets
	PySide6.QtTest
	PySide6.QtTextToSpeech
	PySide6.QtUiTools
	PySide6.QtWebChannel
	PySide6.QtWebEngineCoreToggle navigation of PySide6.QtWebEngineCore
	Functions
	FilterRequest
	FilterRequest.PySide6.QtWebEngineCore.QWebEngineCookieStore.FilterRequest.firstPartyUrl
	FilterRequest.PySide6.QtWebEngineCore.QWebEngineCookieStore.FilterRequest.origin
	FilterRequest.PySide6.QtWebEngineCore.QWebEngineCookieStore.FilterRequest.thirdParty
	FilterRequest.PySide6.QtWebEngineCore.QWebEngineCookieStore.FilterRequest._reservedFlag
	FilterRequest.PySide6.QtWebEngineCore.QWebEngineCookieStore.FilterRequest._reservedType
	QWebEngineCertificateError
	QWebEngineContextMenuRequest
	QWebEngineCookieStore
	QWebEngineDownloadRequest
	QWebEngineFileSystemAccessRequest
	QWebEngineFindTextResult
	QWebEngineFullScreenRequest
	QWebEngineHistory
	QWebEngineHistoryItem
	QWebEngineHistoryModel
	QWebEngineHttpRequest
	QWebEngineLoadingInfo
	QWebEngineNewWindowRequest
	QWebEngineNotification
	QWebEnginePage
	QWebEngineProfile
	QWebEngineQuotaRequest
	QWebEngineRegisterProtocolHandlerRequest
	QWebEngineScript
	QWebEngineScriptCollection
	QWebEngineSettings
	QWebEngineUrlRequestInfo
	QWebEngineUrlRequestInterceptor
	QWebEngineUrlRequestJob
	QWebEngineUrlScheme
	QWebEngineUrlSchemeHandler
	QWebEngineWebAuthPinRequest
	QWebEngineWebAuthPinRequest.PySide6.QtWebEngineCore.QWebEngineWebAuthPinRequest.reason
	QWebEngineWebAuthPinRequest.PySide6.QtWebEngineCore.QWebEngineWebAuthPinRequest.error
	QWebEngineWebAuthPinRequest.PySide6.QtWebEngineCore.QWebEngineWebAuthPinRequest.minPinLength
	QWebEngineWebAuthPinRequest.PySide6.QtWebEngineCore.QWebEngineWebAuthPinRequest.remainingAttempts
	QWebEngineWebAuthUxRequest

	PySide6.QtWebEngineQuick
	PySide6.QtWebEngineWidgets
	PySide6.QtWebSockets
	PySide6.QtWidgets
	PySide6.QtXml

	Tools
	Tutorials
	Examples
	Videos
	Deployment
	Considerations
	Developer Notes
	Module Index

 Back to top

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 	
class QWebEnginePage#
	The QWebEnginePage class provides an object to view and edit web documents. More…

Inheritance diagram of PySide6.QtWebEngineCore.QWebEnginePage

Synopsis#

Properties#

	audioMutedᅟ - Whether the current page audio is muted

	backgroundColorᅟ - Page’s background color behind the document’s body

	contentsSizeᅟ - Size of the page contents

	hasSelectionᅟ - Whether this page contains selected content or not

	iconᅟ - Associated with the page currently viewed

	iconUrlᅟ - URL of the icon associated with the page currently viewed

	lifecycleStateᅟ - Current lifecycle state of the page

	loadingᅟ - Whether the page is currently loading

	recentlyAudibleᅟ - Current page’s audible state, that is, whether audio was recently played or not

	recommendedStateᅟ - Recommended limit for the lifecycle state of the page

	renderProcessPidᅟ - Process ID (PID) of the render process assigned to the current page’s main frame

	requestedUrlᅟ - URL that was originally requested to be loaded by the page that is currently viewed

	scrollPositionᅟ - Scroll position of the page contents

	selectedTextᅟ - Text currently selected

	titleᅟ - Of the page as defined by the HTML <title> element

	urlᅟ - URL of the page currently viewed

	visibleᅟ - Whether the page is considered visible in the Page Visibility API

	zoomFactorᅟ - Zoom factor for the page content

Methods#

	def __init__()

	def acceptAsNewWindow()

	def action()

	def backgroundColor()

	def contentsSize()

	def devToolsId()

	def devToolsPage()

	def download()

	def findText()

	def hasSelection()

	def history()

	def icon()

	def iconUrl()

	def inspectedPage()

	def isAudioMuted()

	def isLoading()

	def isVisible()

	def lifecycleState()

	def load()

	def printToPdf()

	def profile()

	def recentlyAudible()

	def recommendedState()

	def renderProcessPid()

	def replaceMisspelledWord()

	def requestedUrl()

	def runJavaScript()

	def save()

	def scripts()

	def scrollPosition()

	def selectedText()

	def setAudioMuted()

	def setBackgroundColor()

	def setContent()

	def setDevToolsPage()

	def setFeaturePermission()

	def setHtml()

	def setInspectedPage()

	def setLifecycleState()

	def setUrl()

	def setUrlRequestInterceptor()

	def setVisible()

	def setWebChannel()

	def setZoomFactor()

	def settings()

	def title()

	def toHtml()

	def toPlainText()

	def url()

	def webChannel()

	def zoomFactor()

Virtual methods#

	def acceptNavigationRequest()

	def chooseFiles()

	def createWindow()

	def javaScriptAlert()

	def javaScriptConfirm()

	def javaScriptConsoleMessage()

	def javaScriptPrompt()

	def triggerAction()

Signals#

	def _q_aboutToDelete()

	def audioMutedChanged()

	def authenticationRequired()

	def certificateError()

	def contentsSizeChanged()

	def featurePermissionRequestCanceled()

	def featurePermissionRequested()

	def fileSystemAccessRequested()

	def findTextFinished()

	def fullScreenRequested()

	def geometryChangeRequested()

	def iconChanged()

	def iconUrlChanged()

	def lifecycleStateChanged()

	def linkHovered()

	def loadFinished()

	def loadProgress()

	def loadStarted()

	def loadingChanged()

	def newWindowRequested()

	def pdfPrintingFinished()

	def printRequested()

	def proxyAuthenticationRequired()

	def quotaRequested()

	def recentlyAudibleChanged()

	def recommendedStateChanged()

	def registerProtocolHandlerRequested()

	def renderProcessPidChanged()

	def renderProcessTerminated()

	def scrollPositionChanged()

	def selectionChanged()

	def titleChanged()

	def urlChanged()

	def visibleChanged()

	def webAuthUxRequested()

	def windowCloseRequested()

Note

This documentation may contain snippets that were automatically
translated from C++ to Python. We always welcome contributions
to the snippet translation. If you see an issue with the
translation, you can also let us know by creating a ticket on
https:/bugreports.qt.io/projects/PYSIDE

Detailed Description#

A web engine page holds the contents of an HTML document, the history of navigated links, and actions.

QWebEnginePage ‘s API is very similar to QWebEngineView , as you are still provided with common functions like action() (known as pageAction () in QWebEngineView), triggerAction() , and findText() .

A page can be loaded using load() or setUrl() . Alternatively, if you have the HTML content readily available, you can use setHtml() . The GET method is always used to load URLs.

The QWebEnginePage class also offers methods to retrieve both the URL currently loaded by the page (see url()) as well as the URL originally requested to be loaded (see requestedUrl()). These methods make possible the retrieval of the URL before and after a DNS resolution or a redirection occurs during the load process. The requestedUrl() also matches to the URL added to the page history (QWebEngineHistory) if load is successful.

The title of an HTML page can be accessed with the title() property. Additionally, a page may also specify an icon, which can be accessed using the icon() or its URL using the iconUrl() property. If the title or the icon changes, the corresponding titleChanged() , iconChanged() and iconUrlChanged() signals will be emitted. The zoomFactor() property enables zooming the contents of the web page by a scale factor.

The loadStarted() signal is emitted when the page begins to load, whereas the loadProgress() signal is emitted whenever an element of the web page completes loading, such as an embedded image or a script. The loadFinished() signal is emitted when the page contents have been loaded completely, independent of script execution or page rendering. Its argument, either true or false, indicates whether or not the load operation succeeded.

An HTML document is loaded in a main frame within the web page. If it references child frames (as defined by the <frame> or <iframe> elements), they are considered part of the content. Child frames are individually accessible only through JavaScript.

Web sites define security origin for safely accessing each other’s resources for client-side scripting or databases. An origin consist of a host name, a scheme, and a port number. For example, the sites http://www.example.com/my/page.html and http://www.example.com/my/overview.html are allowed to share the same database or access each other’s documents when used in HTML frame sets and JavaScript. At the same time, http://www.malicious.com/evil.html is prevented from accessing the resources of http://www.example.com/, because they are of a different security origin. By default, local schemes like file:// and qrc:// are considered to be in the same security origin, and can access each other’s resources. Local resources are by default restricted from accessing remote content, which means that file:// will not be able to access http://domain.com/foo.html.

Scripts can be executed on the web page by using runJavaScript() , either in the main JavaScript world, along with the rest of the JavaScript coming from the web contents, or in their own isolated world. While the DOM of the page can be accessed from any world, JavaScript variables of a function defined in one world are not accessible from a different one. ScriptWorldId provides some predefined IDs for this purpose. Using the runJavaScript() version without the world ID is the same as running the script in the MainWorld.

The FocusOnNavigationEnabled setting can be used to make the view associated with the page automatically receive focus when a navigation operation occurs (like loading or reloading a page or navigating through history).

	
class WebAction#
	This enum describes the types of action which can be performed on the web page.

Actions only have an effect when they are applicable.

The availability of actions can be be determined by checking isEnabled() on the action returned by action() .

	Constant
	Description

	QWebEnginePage.NoWebAction
	No action is triggered.

	QWebEnginePage.Back
	Navigate back in the history of navigated links.

	QWebEnginePage.Forward
	Navigate forward in the history of navigated links.

	QWebEnginePage.Stop
	Stop loading the current page.

	QWebEnginePage.Reload
	Reload the current page.

	QWebEnginePage.ReloadAndBypassCache
	Reload the current page, but do not use any local cache.

	QWebEnginePage.Cut
	Cut the content currently selected into the clipboard.

	QWebEnginePage.Copy
	Copy the content currently selected into the clipboard.

	QWebEnginePage.Paste
	Paste content from the clipboard.

	QWebEnginePage.Undo
	Undo the last editing action.

	QWebEnginePage.Redo
	Redo the last editing action.

	QWebEnginePage.SelectAll
	Select all content. This action is only enabled when the page’s content is focused. The focus can be forced by the JavaScript window.focus() call, or the FocusOnNavigationEnabled setting should be enabled to get automatic focus.

	QWebEnginePage.PasteAndMatchStyle
	Paste content from the clipboard with current style.

	QWebEnginePage.OpenLinkInThisWindow
	Open the current link in the current window.

	QWebEnginePage.OpenLinkInNewWindow
	Open the current link in a new window. Requires implementation of createWindow() or newWindowRequested() .

	QWebEnginePage.OpenLinkInNewTab
	Open the current link in a new tab. Requires implementation of createWindow() or newWindowRequested() .

	QWebEnginePage.OpenLinkInNewBackgroundTab
	Open the current link in a new background tab. Requires implementation of createWindow() or newWindowRequested() .

	QWebEnginePage.CopyLinkToClipboard
	Copy the current link to the clipboard.

	QWebEnginePage.CopyImageToClipboard
	Copy the clicked image to the clipboard.

	QWebEnginePage.CopyImageUrlToClipboard
	Copy the clicked image’s URL to the clipboard.

	QWebEnginePage.CopyMediaUrlToClipboard
	Copy the hovered audio or video’s URL to the clipboard.

	QWebEnginePage.ToggleMediaControls
	Toggle between showing and hiding the controls for the hovered audio or video element.

	QWebEnginePage.ToggleMediaLoop
	Toggle whether the hovered audio or video should loop on completetion or not.

	QWebEnginePage.ToggleMediaPlayPause
	Toggle the play/pause state of the hovered audio or video element.

	QWebEnginePage.ToggleMediaMute
	Mute or unmute the hovered audio or video element.

	QWebEnginePage.DownloadLinkToDisk
	Download the current link to the disk. Requires a slot for downloadRequested() .

	QWebEnginePage.DownloadImageToDisk
	Download the highlighted image to the disk. Requires a slot for downloadRequested() .

	QWebEnginePage.DownloadMediaToDisk
	Download the hovered audio or video to the disk. Requires a slot for downloadRequested() .

	QWebEnginePage.InspectElement
	Trigger any attached Web Inspector to inspect the highlighed element.

	QWebEnginePage.ExitFullScreen
	Exit the fullscreen mode.

	QWebEnginePage.RequestClose
	Request to close the web page. If defined, the window.onbeforeunload handler is run, and the user can confirm or reject to close the page. If the close request is confirmed, windowCloseRequested is emitted.

	QWebEnginePage.Unselect
	Clear the current selection.

	QWebEnginePage.SavePage
	Save the current page to disk. MHTML is the default format that is used to store the web page on disk. Requires a slot for downloadRequested() .

	QWebEnginePage.ViewSource
	Show the source of the current page in a new tab. Requires implementation of createWindow() or newWindowRequested() .

	QWebEnginePage.ToggleBold
	Toggles boldness for the selection or at the cursor position. Requires contenteditable="true".

	QWebEnginePage.ToggleItalic
	Toggles italics for the selection or at the cursor position. Requires contenteditable="true".

	QWebEnginePage.ToggleUnderline
	Toggles underlining of the selection or at the cursor position. Requires contenteditable="true".

	QWebEnginePage.ToggleStrikethrough
	Toggles striking through the selection or at the cursor position. Requires contenteditable="true".

	QWebEnginePage.AlignLeft
	Aligns the lines containing the selection or the cursor to the left. Requires contenteditable="true".

	QWebEnginePage.AlignCenter
	Aligns the lines containing the selection or the cursor at the center. Requires contenteditable="true".

	QWebEnginePage.AlignRight
	Aligns the lines containing the selection or the cursor to the right. Requires contenteditable="true".

	QWebEnginePage.AlignJustified
	Stretches the lines containing the selection or the cursor so that each line has equal width. Requires contenteditable="true".

	QWebEnginePage.Indent
	Indents the lines containing the selection or the cursor. Requires contenteditable="true".

	QWebEnginePage.Outdent
	Outdents the lines containing the selection or the cursor. Requires contenteditable="true".

	QWebEnginePage.InsertOrderedList
	Inserts an ordered list at the current cursor position, deleting the current selection. Requires contenteditable="true".

	QWebEnginePage.InsertUnorderedList
	Inserts an unordered list at the current cursor position, deleting the current selection. Requires contenteditable="true".

	QWebEnginePage.ChangeTextDirectionLTR
	Changes text direction to left-to-right in the focused input element.

	QWebEnginePage.ChangeTextDirectionRTL
	Changes text direction to right-to-left in the focused input element.

	
class FindFlag#
	(inherits enum.Flag) This enum describes the options available to the findText() function. The options can be OR-ed together from the following list:

	Constant
	Description

	QWebEnginePage.FindBackward
	Searches backwards instead of forwards.

	QWebEnginePage.FindCaseSensitively
	By default findText() works case insensitive. Specifying this option changes the behavior to a case sensitive find operation.

	
class WebWindowType#
	This enum describes the types of window that can be created by the createWindow() function:

	Constant
	Description

	QWebEnginePage.WebBrowserWindow
	A complete web browser window.

	QWebEnginePage.WebBrowserTab
	A web browser tab.

	QWebEnginePage.WebDialog
	A window without decoration.

	QWebEnginePage.WebBrowserBackgroundTab
	A web browser tab without hiding the current visible WebEngineView .

	
class PermissionPolicy#
	This enum describes the permission policies that the user may set for data or device access:

	Constant
	Description

	QWebEnginePage.PermissionUnknown
	It is unknown whether the user grants or denies permission.

	QWebEnginePage.PermissionGrantedByUser
	The user has granted permission.

	QWebEnginePage.PermissionDeniedByUser
	The user has denied permission.

See also

featurePermissionRequested() featurePermissionRequestCanceled() setFeaturePermission() Feature

	
class NavigationType#
	This enum describes the type of a navigation request:

	Constant
	Description

	QWebEnginePage.NavigationTypeLinkClicked
	The navigation request resulted from a clicked link.

	QWebEnginePage.NavigationTypeTyped
	The navigation request resulted from an explicitly loaded URL.

	QWebEnginePage.NavigationTypeFormSubmitted
	The navigation request resulted from a form submission.

	QWebEnginePage.NavigationTypeBackForward
	The navigation request resulted from a back or forward action.

	QWebEnginePage.NavigationTypeReload
	The navigation request resulted from a reload action.

	QWebEnginePage.NavigationTypeRedirect
	The navigation request resulted from a content or server controlled redirect. This also includes automatic reloads.

	QWebEnginePage.NavigationTypeOther
	The navigation request was triggered by other means not covered by the above.

See also

acceptNavigationRequest()

	
class Feature#
	This enum describes the platform feature access categories that the user may be asked to grant or deny access to:

	Constant
	Description

	QWebEnginePage.Notifications
	Web notifications for the end-user.

	QWebEnginePage.Geolocation
	Location hardware or service.

	QWebEnginePage.MediaAudioCapture
	Audio capture devices, such as microphones.

	QWebEnginePage.MediaVideoCapture
	Video devices, such as cameras.

	QWebEnginePage.MediaAudioVideoCapture
	Both audio and video capture devices.

	QWebEnginePage.MouseLock
	Mouse locking, which locks the mouse pointer to the web view and is typically used in games.

	QWebEnginePage.DesktopVideoCapture
	Video output capture, that is, the capture of the user’s display, for screen sharing purposes for example.

	QWebEnginePage.DesktopAudioVideoCapture
	Both audio and video output capture.

See also

featurePermissionRequested() featurePermissionRequestCanceled() setFeaturePermission() PermissionPolicy

	
class FileSelectionMode#
	This enum indicates whether the implementation of the chooseFiles() function should return only one file or may return multiple files:

	Constant
	Description

	QWebEnginePage.FileSelectOpen
	Return only one file name.

	QWebEnginePage.FileSelectOpenMultiple
	Return multiple file names.

	QWebEnginePage.FileSelectUploadFolder
	Allows users to specify a single existing folder for upload.

	QWebEnginePage.FileSelectSave
	Specify a new file to be created.

See also

chooseFiles()

	
class JavaScriptConsoleMessageLevel#
	This enum describes the different severity levels a JavaScript console message can have:

	Constant
	Description

	QWebEnginePage.InfoMessageLevel
	The message is purely informative and can safely be ignored.

	QWebEnginePage.WarningMessageLevel
	The message informs about unexpected behavior or errors that may need attention.

	QWebEnginePage.ErrorMessageLevel
	The message indicates there has been an error.

	
class RenderProcessTerminationStatus#
	This enum describes the status with which the render process terminated:

	Constant
	Description

	QWebEnginePage.NormalTerminationStatus
	The render process terminated normally.

	QWebEnginePage.AbnormalTerminationStatus
	The render process terminated with with a non-zero exit status.

	QWebEnginePage.CrashedTerminationStatus
	The render process crashed, for example because of a segmentation fault.

	QWebEnginePage.KilledTerminationStatus
	The render process was killed, for example by SIGKILL or task manager kill.

	
class LifecycleState#
	This enum describes the lifecycle state of the page:

	Constant
	Description

	QWebEnginePage.LifecycleState.Active
	Normal state.

	QWebEnginePage.LifecycleState.Frozen
	Low CPU usage state where most HTML task sources are suspended.

	QWebEnginePage.LifecycleState.Discarded
	Very low resource usage state where the entire browsing context is discarded.

See also

lifecycleState Page Lifecycle API WebEngine Lifecycle Example

Note

Properties can be used directly when from __feature__ import true_property is used or via accessor functions otherwise.

	
property audioMutedᅟ: bool#
	

This property holds Whether the current page audio is muted..

The default value is false.

See also

recentlyAudible

	Access functions:
		isAudioMuted()

	setAudioMuted()

	Signal audioMutedChanged()

	
property backgroundColorᅟ: QColor#
	

This property holds The page’s background color behind the document’s body..

You can set the background color to Qt::transparent or to a translucent color to see through the document, or you can set it to match your web content in a hybrid application to prevent the white flashes that may appear during loading.

The default value is white.

	Access functions:
		backgroundColor()

	setBackgroundColor()

	
property contentsSizeᅟ: QSizeF#
	

This property holds The size of the page contents..

	Access functions:
		contentsSize()

	Signal contentsSizeChanged()

	
property hasSelectionᅟ: bool#
	

This property holds Whether this page contains selected content or not..

See also

selectionChanged()

	Access functions:
		hasSelection()

	
property iconᅟ: QIcon#
	

This property holds The icon associated with the page currently viewed..

By default, this property contains a null icon. If touch icons are disabled (see QWebEngineSettings::TouchIconsEnabled), the favicon is provided in two sizes (16x16 and 32x32 pixels) encapsulated in QIcon. Otherwise, single icon is provided with the largest available size.

See also

iconChanged() iconUrl() iconUrlChanged() TouchIconsEnabled

	Access functions:
		icon()

	Signal iconChanged()

	
property iconUrlᅟ: QUrl#
	

This property holds The URL of the icon associated with the page currently viewed..

By default, this property contains an empty URL.

See also

iconUrlChanged() icon() iconChanged()

	Access functions:
		iconUrl()

	Signal iconUrlChanged()

	
property lifecycleStateᅟ: QWebEnginePage.LifecycleState#
	

This property holds The current lifecycle state of the page..

The following restrictions are enforced by the setter:

	A visible page must remain in the Active state.

	If the page is being inspected by a devToolsPage then both pages must remain in the Active states.

	A page in the Discarded state can only transition to the Active state. This will cause a reload of the page.

These are the only hard limits on the lifecycle state, but see also recommendedState for the recommended soft limits.

See also

recommendedState Page Lifecycle API WebEngine Lifecycle Example

	Access functions:
		lifecycleState()

	setLifecycleState()

	Signal lifecycleStateChanged()

	
property loadingᅟ: bool#
	

This property holds Whether the page is currently loading..

See also

QWebEngineLoadingInfo loadStarted loadFinished

	Access functions:
		isLoading()

	Signal loadingChanged()

	
property recentlyAudibleᅟ: bool#
	

This property holds The current page’s audible state, that is, whether audio was recently played or not..

The default value is false.

See also

audioMuted

	Access functions:
		recentlyAudible()

	Signal recentlyAudibleChanged()

	
property recommendedStateᅟ: QWebEnginePage.LifecycleState#
	

This property holds The recommended limit for the lifecycle state of the page..

Setting the lifecycle state to a lower resource usage state than the recommended state may cause side-effects such as stopping background audio playback or loss of HTML form input. Setting the lifecycle state to a higher resource state is however completely safe.

See also

lifecycleState Page Lifecycle API WebEngine Lifecycle Example

	Access functions:
		recommendedState()

	Signal recommendedStateChanged()

	
property renderProcessPidᅟ: int#
	

This property holds The process ID (PID) of the render process assigned to the current page’s main frame..

If no render process is available yet, 0 is returned.

	Access functions:
		renderProcessPid()

	Signal renderProcessPidChanged()

	
property requestedUrlᅟ: QUrl#
	

This property holds The URL that was originally requested to be loaded by the page that is currently viewed..

Note

The URL may differ from the one returned by url() , which is the actual URL that results from DNS resolution or redirection.

See also

url() setUrl()

	Access functions:
		requestedUrl()

	
property scrollPositionᅟ: QPointF#
	

This property holds The scroll position of the page contents..

	Access functions:
		scrollPosition()

	Signal scrollPositionChanged()

	
property selectedTextᅟ: str#
	

This property holds The text currently selected..

By default, this property contains an empty string.

See also

selectionChanged()

	Access functions:
		selectedText()

	
property titleᅟ: str#
	

This property holds The title of the page as defined by the HTML <title> element..

If the page has no <title> element, then the URL is used instead. For file:// URLs only the filename is used and not the full path.

By default, before any content has been loaded, this property contains an empty string.

See also

titleChanged()

	Access functions:
		title()

	
property urlᅟ: QUrl#
	

This property holds The URL of the page currently viewed..

Setting this property clears the view and loads the URL.

By default, this property contains an empty, invalid URL.

See also

urlChanged()

	Access functions:
		url()

	setUrl()

	Signal urlChanged()

	
property visibleᅟ: bool#
	

This property holds Whether the page is considered visible in the Page Visibility API..

Setting this property changes the Document.hidden and the Document.visibilityState properties in JavaScript which web sites can use to voluntarily reduce their resource usage if they are not visible to the user.

If the page is connected to a view then this property will be managed automatically by the view according to it’s own visibility.

See also

lifecycleState

	Access functions:
		isVisible()

	setVisible()

	Signal visibleChanged()

	
property zoomFactorᅟ: float#
	

This property holds The zoom factor for the page content..

Valid values are within the range from 0.25 to 5.0. The default factor is 1.0.

	Access functions:
		zoomFactor()

	setZoomFactor()

	
__init__(profile[, parent=None])#
		Parameters:
		profile – QWebEngineProfile

	parent – QObject

Constructs an empty web engine page in the web engine profile profile with the parent parent.

If the profile is not the default profile, the caller must ensure that the profile stays alive for as long as the page does.

	
__init__([parent=None])
		Parameters:
	parent – QObject

Constructs an empty QWebEnginePage with the parent parent.

	
_q_aboutToDelete()#
	

	
acceptAsNewWindow(request)#
		Parameters:
	request – QWebEngineNewWindowRequest

	
acceptNavigationRequest(url, type, isMainFrame)#
		Parameters:
		url – QUrl

	type – NavigationType

	isMainFrame – bool

	Return type:
	bool

This function is called upon receiving a request to navigate to the specified url by means of the specified navigation type type. isMainFrame indicates whether the request corresponds to the main frame or a child frame. If the function returns true, the navigation request is accepted and url is loaded. The default implementation accepts all navigation requests.

Navigation requests can be delegated to the Qt application instead of having the HTML handler engine process them by overloading this function. This is necessary when an HTML document is used as part of the user interface, and not to display external data, for example, when displaying a list of results.

Note

This function is not called for fragment navigation on the same page. Such navigation, for example, happens by clicking a link to a ‘#fragment’ within the page. It does not trigger a load to a different document, even though it changes page’s url and adds history entry. It only serves as a shortcut to scroll within the page. Hence, no delegation of this navigation type is expected to happen.

Note

The loading process is started and the loadStarted() signal is emitted before the request is accepted or rejected. Therefore, a loadFinished() signal that returns false is to be expected even after delegating the request.

Note

When using setHtml or setContent with relative links, make sure to specify a base url, otherwise the links will be considered invalid and no navigation requests will be emitted.

The QWebEngineUrlRequestInterceptor class offers further options for intercepting and manipulating requests.

	
action(action)#
		Parameters:
	action – WebAction

	Return type:
	QAction

Returns a QAction for the specified WebAction action.

The action is owned by the QWebEnginePage but you can customize the look by changing its properties.

QWebEnginePage::action(WebAction action) does not have a default styled icon. Use pageAction() to have an action with a default styled icon.

QWebEnginePage also takes care of implementing the action, so that upon triggering the corresponding action is performed on the page.

See also

triggerAction()

	
audioMutedChanged(muted)#
		Parameters:
	muted – bool

This signal is emitted when the page’s muted state changes.

Note

Not to be confused with a specific HTML5 audio or video element being muted.

Notification signal of property audioMutedᅟ .

	
authenticationRequired(requestUrl, authenticator)#
		Parameters:
		requestUrl – QUrl

	authenticator – QAuthenticator

This signal is emitted when access to requestUrl requires authentication. authenticator should be used to pass the user name and password for the connection.

	
backgroundColor()#
		Return type:
	QColor

See also

setBackgroundColor()

Getter of property backgroundColorᅟ .

	
certificateError(certificateError)#
		Parameters:
	certificateError – QWebEngineCertificateError

This signal is emitted when an invalid certificate error is raised while loading a given request.

The certificateError parameter contains information about the certificate and details of the error, it also provides the way to ignore the error and complete the request or stop loading the request.

See also

QWebEngineCertificateError

	
chooseFiles(mode, oldFiles, acceptedMimeTypes)#
		Parameters:
		mode – FileSelectionMode

	oldFiles – list of strings

	acceptedMimeTypes – list of strings

	Return type:
	list of strings

This function is called when the web content requests a file name, for example as a result of the user clicking on a file upload button in an HTML form.

mode indicates whether only one file or multiple files are expected to be returned.

A suggested filename may be provided as the first entry of oldFiles. acceptedMimeTypes is ignored by the default implementation, but might be used by overrides.

	
contentsSize()#
		Return type:
	QSizeF

Getter of property contentsSizeᅟ .

	
contentsSizeChanged(size)#
		Parameters:
	size – QSizeF

Notification signal of property contentsSizeᅟ .

	
createWindow(type)#
		Parameters:
	type – WebWindowType

	Return type:
	QWebEnginePage

This function is called to create a new window of the specified type. For example, when a JavaScript program requests to open a document in a new window.

If the new window can be created, the new window’s QWebEnginePage is returned; otherwise a null pointer is returned.

If the view associated with the web page is a QWebEngineView object, then the default implementation forwards the request to createWindow() ; otherwise it returns a null pointer.

If this call is not implemented or does not return a new page, newWindowRequested() is emitted to handle the request.

Note

In the cases when the window creation is being triggered by JavaScript, apart from reimplementing this method the application must also set JavascriptCanOpenWindows to true in order for the method to get called.

See also

createWindow() newWindowRequested()

	
devToolsId()#
		Return type:
	str

Returns the id of the developer tools host associated with this page.

If remote debugging is enabled (see Qt WebEngine Developer Tools), the id can be used to build the URL to connect to the developer tool websocket: ws://localhost:<debugggin-port>/devtools/page/<id>). The websocket can be used to to interact with the page using the DevTools Protocol .

	
devToolsPage()#
		Return type:
	QWebEnginePage

Returns the page that is hosting the developer tools of this page, if any.

Returns nullptr if no developer tools page is set.

See also

setDevToolsPage() inspectedPage()

	
download(url[, filename=""])#
		Parameters:
		url – QUrl

	filename – str

Downloads the resource from the location given by url to a local file.

If filename is given, it is used as the suggested file name. If it is relative, the file is saved in the standard download location with the given name. If it is a null or empty QString, the default file name is used.

This will emit downloadRequested() after the download has started.

	
featurePermissionRequestCanceled(securityOrigin, feature)#
		Parameters:
		securityOrigin – QUrl

	feature – Feature

This signal is emitted when the web site identified by securityOrigin cancels a previously issued request to make use of feature.

See also

featurePermissionRequested() setFeaturePermission()

	
featurePermissionRequested(securityOrigin, feature)#
		Parameters:
		securityOrigin – QUrl

	feature – Feature

This signal is emitted when the web site identified by securityOrigin requests to make use of the resource or device identified by feature.

See also

featurePermissionRequestCanceled() setFeaturePermission()

	
fileSystemAccessRequested(request)#
		Parameters:
	request – QWebEngineFileSystemAccessRequest

This signal is emitted when the web page requests access to local files or directories.

The request object request can be used to accept or reject the request.

	
findText(arg__1, arg__2, arg__3)#
		Parameters:
		arg__1 – str

	arg__2 – Combination of FindFlag

	arg__3 – object

	
findText(subString[, options={}])
		Parameters:
		subString – str

	options – Combination of FindFlag

	
findTextFinished(result)#
		Parameters:
	result – QWebEngineFindTextResult

This signal is emitted when a search string search on a page is completed. result is the result of the string search.

See also

findText()

	
fullScreenRequested(fullScreenRequest)#
		Parameters:
	fullScreenRequest – QWebEngineFullScreenRequest

This signal is emitted when the web page issues the request to enter fullscreen mode for a web-element, usually a video element.

The request object fullScreenRequest can be used to accept or reject the request.

If the request is accepted the element requesting fullscreen will fill the viewport, but it is up to the application to make the view fullscreen or move the page to a view that is fullscreen.

See also

FullScreenSupportEnabled

	
geometryChangeRequested(geom)#
		Parameters:
	geom – QRect

This signal is emitted whenever the document wants to change the position and size of the page to geom. This can happen for example through JavaScript.

Note

setGeometry() expects a size excluding the window decoration, while geom includes it. You have to remove the size of the frame margins from geom to handle this signal correctly.

window->setGeometry(geom.marginsRemoved(window->frameMargins()));

	
hasSelection()#
		Return type:
	bool

Getter of property hasSelectionᅟ .

	
history()#
		Return type:
	QWebEngineHistory

Returns a pointer to the view’s history of navigated web pages.

	
icon()#
		Return type:
	QIcon

Getter of property iconᅟ .

	
iconChanged(icon)#
		Parameters:
	icon – QIcon

This signal is emitted when the icon (“favicon”) associated with the page is changed. The new icon is specified by icon.

See also

icon() iconUrl() iconUrlChanged()

Notification signal of property iconᅟ .

	
iconUrl()#
		Return type:
	QUrl

Getter of property iconUrlᅟ .

	
iconUrlChanged(url)#
		Parameters:
	url – QUrl

This signal is emitted when the URL of the icon (“favicon”) associated with the page is changed. The new URL is specified by url.

See also

iconUrl() icon() iconChanged()

Notification signal of property iconUrlᅟ .

	
inspectedPage()#
		Return type:
	QWebEnginePage

Returns the page this page is inspecting, if any.

Returns nullptr if this page is not a developer tools page.

See also

setInspectedPage() devToolsPage()

	
isAudioMuted()#
		Return type:
	bool

Getter of property audioMutedᅟ .

	
isLoading()#
		Return type:
	bool

Getter of property loadingᅟ .

	
isVisible()#
		Return type:
	bool

Getter of property visibleᅟ .

	
javaScriptAlert(securityOrigin, msg)#
		Parameters:
		securityOrigin – QUrl

	msg – str

This function is called whenever a JavaScript program running in a frame affiliated with securityOrigin calls the alert() function with the message msg.

The default implementation shows the message, msg, with QMessageBox::information.

	
javaScriptConfirm(securityOrigin, msg)#
		Parameters:
		securityOrigin – QUrl

	msg – str

	Return type:
	bool

This function is called whenever a JavaScript program running in a frame affiliated with securityOrigin calls the confirm() function with the message msg. Returns true if the user confirms the message; otherwise returns false.

It is also called when the onbeforeunload handler is requesting a confirmation before leaving a page.

The default implementation executes the query using QMessageBox::information with QMessageBox::Ok and QMessageBox::Cancel buttons.

	
javaScriptConsoleMessage(level, message, lineNumber, sourceID)#
		Parameters:
		level – JavaScriptConsoleMessageLevel

	message – str

	lineNumber – int

	sourceID – str

This function is called when a JavaScript program tries to print the message to the web browser’s console.

For example, in case of evaluation errors the source URL may be provided in sourceID as well as the lineNumber.

level indicates the severity of the event that triggered the message. That is, whether it was triggered by an error or a less severe event.

Since Qt 5.6, the default implementation logs the messages in a js logging category.

See also

Console Logging

	
javaScriptPrompt(securityOrigin, msg, defaultValue, result)#
		Parameters:
		securityOrigin – QUrl

	msg – str

	defaultValue – str

	result – str

	Return type:
	bool

This function is called whenever a JavaScript program running in a frame affiliated with securityOrigin tries to prompt the user for input. The program may provide an optional message, msg, as well as a default value for the input in defaultValue.

If the prompt was cancelled by the user, the implementation should return false; otherwise the result should be written to result and true should be returned. If the prompt was not cancelled by the user, the implementation should return true and the result string must not be null.

The default implementation uses QInputDialog::getText().

	
lifecycleState()#
		Return type:
	LifecycleState

See also

setLifecycleState()

Getter of property lifecycleStateᅟ .

	
lifecycleStateChanged(state)#
		Parameters:
	state – LifecycleState

Notification signal of property lifecycleStateᅟ .

	
linkHovered(url)#
		Parameters:
	url – str

This signal is emitted when the mouse hovers over a link. url contains the target URL of the link.

	
load(url)#
		Parameters:
	url – QUrl

Loads url into this page.

Note

The view remains the same until enough data has arrived to display the new URL.

See also

setUrl() setHtml() setContent()

	
load(request)
		Parameters:
	request – QWebEngineHttpRequest

Issues the specified request and loads the response.

See also

load() setUrl() url() urlChanged() fromUserInput()

	
loadFinished(ok)#
		Parameters:
	ok – bool

This signal is emitted when the page finishes loading content. This signal is independent of script execution or page rendering. ok will indicate whether the load was successful or any error occurred.

Note

Navigation requests can be delegated to the Qt application instead of having the HTML handler engine process them by overloading the acceptNavigationRequest() function. Because the loading process is started and the loadStarted() signal is emitted before the request is accepted or rejected, a loadFinished() signal that returns false is to be expected even after delegating the request.

See also

loadStarted() acceptNavigationRequest()

	
loadProgress(progress)#
		Parameters:
	progress – int

This signal is emitted when the global progress status changes. The current value is provided by progress and scales from 0 to 100, which is the default range of QProgressBar. It accumulates changes from all the child frames.

	
loadStarted()#
	

This signal is emitted when a page starts loading content.

See also

loadFinished() acceptNavigationRequest()

	
loadingChanged(loadingInfo)#
		Parameters:
	loadingInfo – QWebEngineLoadingInfo

This signal is emitted when loading the page specified by loadingInfo begins, ends, or fails.

Notification signal of property loadingᅟ .

	
newWindowRequested(request)#
		Parameters:
	request – QWebEngineNewWindowRequest

This signal is emitted when request is issued to load a page in a separate web engine window. This can either be because the current page requested it explicitly through a JavaScript call to window.open, or because the user clicked on a link while holding Shift, Ctrl, or a built-in combination that triggers the page to open in a new window.

The signal is handled by calling openIn() with the new page on the request. If this signal is not handled, the requested load will fail.

Note

This signal is not emitted if createWindow() handled the request first.

See also

createWindow() openIn()

	
pdfPrintingFinished(filePath, success)#
		Parameters:
		filePath – str

	success – bool

This signal is emitted when printing the web page into a PDF file has finished. filePath will contain the path the file was requested to be created at, and success will be true if the file was successfully created and false otherwise.

See also

printToPdf()

	
printRequested()#
	

This signal is emitted when the JavaScript window.print() method is called or the user pressed the print button of PDF viewer plugin. Typically, the signal handler can simply call printToPdf() .

See also

printToPdf()

	
printToPdf(filePath[, layout=QPageLayout(QPageSize(QPageSize.A4), QPageLayout.Portrait, QMarginsF())[, ranges={}]])#
		Parameters:
		filePath – str

	layout – QPageLayout

	ranges – QPageRanges

Renders the current content of the page into a PDF document and saves it in the location specified in filePath. The page size and orientation of the produced PDF document are taken from the values specified in layout, while the range of pages printed is taken from ranges with the default being printing all pages.

This method issues an asynchronous request for printing the web page into a PDF and returns immediately. To be informed about the result of the request, connect to the signal pdfPrintingFinished() .

Note

The Stop web action can be used to interrupt this asynchronous operation.

If a file already exists at the provided file path, it will be overwritten.

See also

pdfPrintingFinished()

	
profile()#
		Return type:
	QWebEngineProfile

Returns the web engine profile the page belongs to.

	
proxyAuthenticationRequired(requestUrl, authenticator, proxyHost)#
		Parameters:
		requestUrl – QUrl

	authenticator – QAuthenticator

	proxyHost – str

This signal is emitted when access to requestUrl via proxyHost requires authentication for the proxy. authenticator should be used to pass the user name and password for the connection.

	
quotaRequested(quotaRequest)#
		Parameters:
	quotaRequest – QWebEngineQuotaRequest

Note

This function is deprecated.

This signal is no longer emitted.

Requesting host quota is no longer supported by Chromium. The behavior of navigator.webkitPersistentStorage is identical to navigator.webkitTemporaryStorage.

For further details, see https://crbug.com/1233525

	
recentlyAudible()#
		Return type:
	bool

Getter of property recentlyAudibleᅟ .

	
recentlyAudibleChanged(recentlyAudible)#
		Parameters:
	recentlyAudible – bool

This signal is emitted when the page’s audible state, recentlyAudible, changes, because the audio is played or stopped.

Note

The signal is also emitted when calling the setAudioMuted() method.

Notification signal of property recentlyAudibleᅟ .

	
recommendedState()#
		Return type:
	LifecycleState

Getter of property recommendedStateᅟ .

	
recommendedStateChanged(state)#
		Parameters:
	state – LifecycleState

Notification signal of property recommendedStateᅟ .

	
registerProtocolHandlerRequested(request)#
		Parameters:
	request – QWebEngineRegisterProtocolHandlerRequest

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

This signal is emitted when the web page tries to register a custom protocol using the registerProtocolHandler API.

The request object request can be used to accept or reject the request:

def handleRegisterProtocolHandlerRequested(self):
 QWebEngineRegisterProtocolHandlerRequest request)

 answer = QMessageBox.question(window(), tr("Permission Request"),()
 tr("Allow %1 to open all %2 links?")
 .arg(request.origin().host())
 .arg(request.scheme()))
 if answer == QMessageBox.Yes:
 request.accept()
else:
 request.reject()

	
renderProcessPid()#
		Return type:
	int

Getter of property renderProcessPidᅟ .

	
renderProcessPidChanged(pid)#
		Parameters:
	pid – int

This signal is emitted when the underlying render process PID, pid, changes.

Notification signal of property renderProcessPidᅟ .

	
renderProcessTerminated(terminationStatus, exitCode)#
		Parameters:
		terminationStatus – RenderProcessTerminationStatus

	exitCode – int

This signal is emitted when the render process is terminated with a non-zero exit status. terminationStatus is the termination status of the process and exitCode is the status code with which the process terminated.

	
replaceMisspelledWord(replacement)#
		Parameters:
	replacement – str

Replace the current misspelled word with replacement.

The current misspelled word can be found in misspelledWord() , and suggested replacements in spellCheckerSuggestions() .

	
requestedUrl()#
		Return type:
	QUrl

Getter of property requestedUrlᅟ .

	
runJavaScript(arg__1, arg__2, arg__3)#
		Parameters:
		arg__1 – str

	arg__2 – int

	arg__3 – object

	
runJavaScript(scriptSource[, worldId=0])
		Parameters:
		scriptSource – str

	worldId – int

	
save(filePath[, format=QWebEngineDownloadRequest.MimeHtmlSaveFormat])#
		Parameters:
		filePath – str

	format – SavePageFormat

Save the currently loaded web page to disk.

The web page is saved to filePath in the specified format.

This is a short cut for the following actions:

	Trigger the Save web action.

	Accept the next download item and set the specified file path and save format.

This function issues an asynchronous download request for the web page and returns immediately.

See also

SavePageFormat

	
scripts()#
		Return type:
	QWebEngineScriptCollection

Returns the collection of scripts that are injected into the page.

In addition, a page might also execute scripts added through scripts() .

See also

QWebEngineScriptCollection QWebEngineScript Script Injection

	
scrollPosition()#
		Return type:
	QPointF

Getter of property scrollPositionᅟ .

	
scrollPositionChanged(position)#
		Parameters:
	position – QPointF

Notification signal of property scrollPositionᅟ .

	
selectedText()#
		Return type:
	str

Getter of property selectedTextᅟ .

	
selectionChanged()#
	

This signal is emitted whenever the selection changes, either interactively or programmatically. For example, by calling triggerAction() with a selection action.

Note

When using the mouse to select text by left-clicking and dragging, the signal will be emitted for each new character selected, and not upon releasing the left mouse button.

See also

selectedText()

	
setAudioMuted(muted)#
		Parameters:
	muted – bool

See also

isAudioMuted()

Setter of property audioMutedᅟ .

	
setBackgroundColor(color)#
		Parameters:
	color – QColor

See also

backgroundColor()

Setter of property backgroundColorᅟ .

	
setContent(data[, mimeType=""[, baseUrl=QUrl()]])#
		Parameters:
		data – QByteArray

	mimeType – str

	baseUrl – QUrl

Sets the content of the web page to data. If the mimeType argument is empty, it is assumed that the content is text/plain,charset=US-ASCII.

External objects referenced in the content are located relative to baseUrl. For external objects with relative URLs to be loaded, baseUrl cannot be empty.

The data is loaded immediately; external objects are loaded asynchronously.

Note

This method will not affect session or global history for the page.

Warning

The content will be percent encoded before being sent to the renderer via IPC. This may increase its size. The maximum size of the percent encoded content is 2 megabytes minus 6 bytes plus the length of the mime type string.

See also

toHtml() setHtml()

	
setDevToolsPage(page)#
		Parameters:
	page – QWebEnginePage

Binds devToolsPage to be the developer tools of this page. Triggers devToolsPage to navigate to an internal URL with the developer tools.

This is the same as calling setInspectedPage() on devToolsPage with this as argument.

See also

devToolsPage() setInspectedPage()

	
setFeaturePermission(securityOrigin, feature, policy)#
		Parameters:
		securityOrigin – QUrl

	feature – Feature

	policy – PermissionPolicy

Sets the permission for the web site identified by securityOrigin to use feature to policy.

Note

This method is primarily for calling after a featurePermissionRequested() signal has been emitted to trigger the feature permission response. It can also be called before a request has been emitted, but will only set a granted permission for passive checks, mainly for Notification APIs that can check if permission has already been granted before explicitly requesting it.

See also

featurePermissionRequested() featurePermissionRequestCanceled()

	
setHtml(html[, baseUrl=QUrl()])#
		Parameters:
		html – str

	baseUrl – QUrl

Sets the content of this page to html. baseUrl is optional and used to resolve relative URLs in the document, such as referenced images or stylesheets.

The html is loaded immediately; external objects are loaded asynchronously.

If a script in the html runs longer than the default script timeout (currently 10 seconds), for example due to being blocked by a modal JavaScript alert dialog, this method will return as soon as possible after the timeout and any subsequent html will be loaded asynchronously.

When using this method, the web engine assumes that external resources, such as JavaScript programs or style sheets, are encoded in UTF-8 unless otherwise specified. For example, the encoding of an external script can be specified through the charset attribute of the HTML script tag. It is also possible for the encoding to be specified by the web server.

This is a convenience function equivalent to setContent (html, “text/html”, baseUrl).

Note

This method will not affect session or global history for the page.

Warning

This function works only for HTML, for other mime types (such as XHTML and SVG) setContent() should be used instead.

Warning

The content will be percent encoded before being sent to the renderer via IPC. This may increase its size. The maximum size of the percent encoded content is 2 megabytes minus 30 bytes.

See also

toHtml() setContent() load()

	
setInspectedPage(page)#
		Parameters:
	page – QWebEnginePage

Navigates this page to an internal URL that is the developer tools of page.

This is the same as calling setDevToolsPage() on page with this as argument.

See also

inspectedPage() setDevToolsPage()

	
setLifecycleState(state)#
		Parameters:
	state – LifecycleState

See also

lifecycleState()

Setter of property lifecycleStateᅟ .

	
setUrl(url)#
		Parameters:
	url – QUrl

See also

url()

Setter of property urlᅟ .

	
setUrlRequestInterceptor(interceptor)#
		Parameters:
	interceptor – QWebEngineUrlRequestInterceptor

Registers the request interceptor interceptor to intercept URL requests.

The page does not take ownership of the pointer. This interceptor is called after any interceptors on the profile, and unlike profile interceptors, only URL requests from this page are intercepted. If the original request was already blocked or redirected by the profile interceptor, it will not be intercepted by this.

To unset the request interceptor, set a nullptr.

See also

QWebEngineUrlRequestInfo setUrlRequestInterceptor()

	
setVisible(visible)#
		Parameters:
	visible – bool

See also

isVisible()

Setter of property visibleᅟ .

	
setWebChannel(arg__1[, worldId=0])#
		Parameters:
		arg__1 – QWebChannel

	worldId – int

Sets the web channel instance to be used by this page to channel and connects it to web engine’s transport using Chromium IPC messages. The transport is exposed in the JavaScript world worldId as qt.webChannelTransport, which should be used when using the Qt WebChannel JavaScript API.

Note

The page does not take ownership of the channel object.

Note

Only one web channel can be installed per page, setting one even in another JavaScript world uninstalls any already installed web channel.

See also

webChannel() ScriptWorldId

	
setZoomFactor(factor)#
		Parameters:
	factor – float

See also

zoomFactor()

Setter of property zoomFactorᅟ .

	
settings()#
		Return type:
	QWebEngineSettings

Returns a pointer to the page’s settings object.

	
title()#
		Return type:
	str

Getter of property titleᅟ .

	
titleChanged(title)#
		Parameters:
	title – str

This signal is emitted whenever the title of the page changes. The title string specifies the new title.

See also

title()

	
toHtml(arg__1)#
		Parameters:
	arg__1 – object

	
toPlainText(arg__1)#
		Parameters:
	arg__1 – object

	
triggerAction(action[, checked=false])#
		Parameters:
		action – WebAction

	checked – bool

This function can be called to trigger the specified action. It is also called by Qt WebEngine if the user triggers the action, for example through a context menu item.

If action is a checkable action, then checked specifies whether the action is toggled or not.

See also

action()

	
url()#
		Return type:
	QUrl

See also

setUrl()

Getter of property urlᅟ .

	
urlChanged(url)#
		Parameters:
	url – QUrl

This signal is emitted with the URL of the page when the page title is received. The new URL is specified by url.

See also

url()

Notification signal of property urlᅟ .

	
visibleChanged(visible)#
		Parameters:
	visible – bool

Notification signal of property visibleᅟ .

	
webAuthUxRequested(request)#
		Parameters:
	request – QWebEngineWebAuthUxRequest

This signal is emitted when a WebAuth authenticator needs user interaction during the authentication process. These requests are handled by displaying a dialog to the user.

The request contains the information and API required to complete the WebAuth UX request.

See also

QWebEngineWebAuthUxRequest

	
webChannel()#
		Return type:
	QWebChannel

Returns a pointer to the web channel instance used by this page or a null pointer if none was set. This channel automatically uses the internal web engine transport mechanism over Chromium IPC that is exposed in the JavaScript context of this page as qt.webChannelTransport.

See also

setWebChannel()

	
windowCloseRequested()#
	

This signal is emitted whenever the page requests the web browser window to be closed, for example through the JavaScript window.close() call.

See also

RequestClose

	
zoomFactor()#
		Return type:
	float

See also

setZoomFactor()

Getter of property zoomFactorᅟ .

 Next

 Synopsis

 Previous

 Synopsis

 Copyright © 2024 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 (https://www.gnu.org/licenses/fdl.html) as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.

 Made with Sphinx and @pradyunsg's

 Furo

 On this page

 	QWebEnginePage	QWebEnginePage.WebAction
	QWebEnginePage.FindFlag
	QWebEnginePage.WebWindowType
	QWebEnginePage.PermissionPolicy
	QWebEnginePage.NavigationType
	QWebEnginePage.Feature
	QWebEnginePage.FileSelectionMode
	QWebEnginePage.JavaScriptConsoleMessageLevel
	QWebEnginePage.RenderProcessTerminationStatus
	QWebEnginePage.LifecycleState
	QWebEnginePage.audioMutedᅟ
	QWebEnginePage.backgroundColorᅟ
	QWebEnginePage.contentsSizeᅟ
	QWebEnginePage.hasSelectionᅟ
	QWebEnginePage.iconᅟ
	QWebEnginePage.iconUrlᅟ
	QWebEnginePage.lifecycleStateᅟ
	QWebEnginePage.loadingᅟ
	QWebEnginePage.recentlyAudibleᅟ
	QWebEnginePage.recommendedStateᅟ
	QWebEnginePage.renderProcessPidᅟ
	QWebEnginePage.requestedUrlᅟ
	QWebEnginePage.scrollPositionᅟ
	QWebEnginePage.selectedTextᅟ
	QWebEnginePage.titleᅟ
	QWebEnginePage.urlᅟ
	QWebEnginePage.visibleᅟ
	QWebEnginePage.zoomFactorᅟ
	QWebEnginePage.__init__()
	QWebEnginePage._q_aboutToDelete()
	QWebEnginePage.acceptAsNewWindow()
	QWebEnginePage.acceptNavigationRequest()
	QWebEnginePage.action()
	QWebEnginePage.audioMutedChanged()
	QWebEnginePage.authenticationRequired()
	QWebEnginePage.backgroundColor()
	QWebEnginePage.certificateError()
	QWebEnginePage.chooseFiles()
	QWebEnginePage.contentsSize()
	QWebEnginePage.contentsSizeChanged()
	QWebEnginePage.createWindow()
	QWebEnginePage.devToolsId()
	QWebEnginePage.devToolsPage()
	QWebEnginePage.download()
	QWebEnginePage.featurePermissionRequestCanceled()
	QWebEnginePage.featurePermissionRequested()
	QWebEnginePage.fileSystemAccessRequested()
	QWebEnginePage.findText()
	QWebEnginePage.findTextFinished()
	QWebEnginePage.fullScreenRequested()
	QWebEnginePage.geometryChangeRequested()
	QWebEnginePage.hasSelection()
	QWebEnginePage.history()
	QWebEnginePage.icon()
	QWebEnginePage.iconChanged()
	QWebEnginePage.iconUrl()
	QWebEnginePage.iconUrlChanged()
	QWebEnginePage.inspectedPage()
	QWebEnginePage.isAudioMuted()
	QWebEnginePage.isLoading()
	QWebEnginePage.isVisible()
	QWebEnginePage.javaScriptAlert()
	QWebEnginePage.javaScriptConfirm()
	QWebEnginePage.javaScriptConsoleMessage()
	QWebEnginePage.javaScriptPrompt()
	QWebEnginePage.lifecycleState()
	QWebEnginePage.lifecycleStateChanged()
	QWebEnginePage.linkHovered()
	QWebEnginePage.load()
	QWebEnginePage.loadFinished()
	QWebEnginePage.loadProgress()
	QWebEnginePage.loadStarted()
	QWebEnginePage.loadingChanged()
	QWebEnginePage.newWindowRequested()
	QWebEnginePage.pdfPrintingFinished()
	QWebEnginePage.printRequested()
	QWebEnginePage.printToPdf()
	QWebEnginePage.profile()
	QWebEnginePage.proxyAuthenticationRequired()
	QWebEnginePage.quotaRequested()
	QWebEnginePage.recentlyAudible()
	QWebEnginePage.recentlyAudibleChanged()
	QWebEnginePage.recommendedState()
	QWebEnginePage.recommendedStateChanged()
	QWebEnginePage.registerProtocolHandlerRequested()
	QWebEnginePage.renderProcessPid()
	QWebEnginePage.renderProcessPidChanged()
	QWebEnginePage.renderProcessTerminated()
	QWebEnginePage.replaceMisspelledWord()
	QWebEnginePage.requestedUrl()
	QWebEnginePage.runJavaScript()
	QWebEnginePage.save()
	QWebEnginePage.scripts()
	QWebEnginePage.scrollPosition()
	QWebEnginePage.scrollPositionChanged()
	QWebEnginePage.selectedText()
	QWebEnginePage.selectionChanged()
	QWebEnginePage.setAudioMuted()
	QWebEnginePage.setBackgroundColor()
	QWebEnginePage.setContent()
	QWebEnginePage.setDevToolsPage()
	QWebEnginePage.setFeaturePermission()
	QWebEnginePage.setHtml()
	QWebEnginePage.setInspectedPage()
	QWebEnginePage.setLifecycleState()
	QWebEnginePage.setUrl()
	QWebEnginePage.setUrlRequestInterceptor()
	QWebEnginePage.setVisible()
	QWebEnginePage.setWebChannel()
	QWebEnginePage.setZoomFactor()
	QWebEnginePage.settings()
	QWebEnginePage.title()
	QWebEnginePage.titleChanged()
	QWebEnginePage.toHtml()
	QWebEnginePage.toPlainText()
	QWebEnginePage.triggerAction()
	QWebEnginePage.url()
	QWebEnginePage.urlChanged()
	QWebEnginePage.visibleChanged()
	QWebEnginePage.webAuthUxRequested()
	QWebEnginePage.webChannel()
	QWebEnginePage.windowCloseRequested()
	QWebEnginePage.zoomFactor()

