

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 Qt for Python

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 Qt for Python

 	Quick start
	Commercial Use
	Getting Started
	Modules APIToggle navigation of Modules API
	Qt Modules Supported by Qt for PythonToggle navigation of Qt Modules Supported by Qt for Python
	PySide6.Qt3DAnimation
	PySide6.Qt3DCore
	PySide6.Qt3DExtras
	PySide6.Qt3DInput
	PySide6.Qt3DLogic
	PySide6.Qt3DRender
	PySide6.QtAsyncio
	PySide6.QtBluetooth
	PySide6.QtCharts
	PySide6.QtConcurrent
	PySide6.QtCore
	PySide6.QtDBus
	PySide6.QtDesigner
	PySide6.QtGraphs
	PySide6.QtGui
	PySide6.QtHelp
	PySide6.QtHttpServer
	PySide6.QtLocation
	PySide6.QtMultimedia
	PySide6.QtMultimediaWidgets
	PySide6.QtNetwork
	PySide6.QtNetworkAuth
	PySide6.QtNfc
	PySide6.QtOpenGL
	PySide6.QtOpenGLWidgets
	PySide6.QtPdf
	PySide6.QtPdfWidgets
	PySide6.QtPositioning
	PySide6.QtPrintSupport
	PySide6.QtQml
	PySide6.QtQuick
	PySide6.QtQuick3D
	PySide6.QtQuickControls2
	PySide6.QtQuickTest
	PySide6.QtQuickWidgets
	PySide6.QtRemoteObjects
	PySide6.QtScxml
	PySide6.QtSensors
	PySide6.QtSerialBus
	PySide6.QtSerialPort
	PySide6.QtSpatialAudio
	PySide6.QtSql
	PySide6.QtStateMachine
	PySide6.QtSvg
	PySide6.QtSvgWidgets
	PySide6.QtTest
	PySide6.QtTextToSpeech
	PySide6.QtUiTools
	PySide6.QtWebChannel
	PySide6.QtWebEngineCore
	PySide6.QtWebEngineQuick
	PySide6.QtWebEngineWidgetsToggle navigation of PySide6.QtWebEngineWidgets
	QWebEngineView

	PySide6.QtWebSockets
	PySide6.QtWidgets
	PySide6.QtXml

	Tools
	Tutorials
	Examples
	Videos
	Deployment
	Considerations
	Developer Notes
	Module Index

 Back to top

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 	
class QWebEngineView#
	The QWebEngineView class provides a widget that is used to view and edit web documents. More…

Inheritance diagram of PySide6.QtWebEngineWidgets.QWebEngineView

Synopsis#

Properties#

	hasSelectionᅟ - Whether this page contains selected content or not

	iconᅟ - Associated with the page currently viewed

	iconUrlᅟ - URL of the icon associated with the page currently viewed

	selectedTextᅟ - Text currently selected

	titleᅟ - Of the page as defined by the HTML <title> element

	urlᅟ - URL of the web page currently viewed

	zoomFactorᅟ - Zoom factor for the view

Methods#

	def __init__()

	def createStandardContextMenu()

	def findText()

	def hasSelection()

	def history()

	def icon()

	def iconUrl()

	def lastContextMenuRequest()

	def load()

	def page()

	def pageAction()

	def print()

	def printToPdf()

	def selectedText()

	def setContent()

	def setHtml()

	def setPage()

	def setUrl()

	def setZoomFactor()

	def settings()

	def title()

	def triggerPageAction()

	def url()

	def zoomFactor()

Virtual methods#

	def createWindow()

Slots#

	def back()

	def forward()

	def reload()

	def stop()

Signals#

	def iconChanged()

	def iconUrlChanged()

	def loadFinished()

	def loadProgress()

	def loadStarted()

	def pdfPrintingFinished()

	def printFinished()

	def printRequested()

	def renderProcessTerminated()

	def selectionChanged()

	def titleChanged()

	def urlChanged()

Static functions#

	def forPage()

Note

This documentation may contain snippets that were automatically
translated from C++ to Python. We always welcome contributions
to the snippet translation. If you see an issue with the
translation, you can also let us know by creating a ticket on
https:/bugreports.qt.io/projects/PYSIDE

Detailed Description#

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

A web view is the main widget component of the Qt WebEngine web browsing module. It can be used in various applications to display web content live from the Internet.

A web site can be loaded to a web view with the load() function. The GET method is always used to load URLs.

Like all Qt widgets, the show() function must be invoked in order to display the web view. The snippet below illustrates this:

view = QWebEngineView()
view.load(QUrl("https://qt-project.org/"))
view.resize(1024, 750)
view.show()

Alternatively, setUrl() can be used to load a web site. If you have the HTML content readily available, you can use setHtml() instead.

The loadStarted() signal is emitted when the view begins loading and the loadProgress() signal is emitted whenever an element of the web view completes loading, such as an embedded image or a script. The loadFinished() signal is emitted when the view has been loaded completely. Its argument, either true or false, indicates whether loading was successful or failed.

The page() function returns a pointer to a web page object. A QWebEngineView contains a QWebEnginePage , which in turn allows access to the QWebEngineHistory in the page’s context.

The title of an HTML document can be accessed with the title() property. Additionally, a web site may specify an icon, which can be accessed using the icon() or its URL using the iconUrl() property. If the title or the icon changes, the corresponding titleChanged() , iconChanged() and iconUrlChanged() signals will be emitted. The zoomFactor() property enables zooming the contents of the web page by a scale factor.

The widget features a context menu that is tailored to the element at hand, and includes actions useful in a browser. For a custom context menu, or for embedding actions in a menu or toolbar, the individual actions are available via pageAction() . The web view maintains the state of the returned actions, but allows modification of action properties such as text or icon. The action semantics can also be triggered directly through triggerPageAction() .

If you want to provide support for web sites that allow the user to open new windows, such as pop-up windows, you can subclass QWebEngineView and reimplement the createWindow() function.

See also

WebEngine Widgets Simple Browser Example WebEngine Content Manipulation Example

Note

Properties can be used directly when from __feature__ import true_property is used or via accessor functions otherwise.

	
property hasSelectionᅟ: bool#
	

This property holds Whether this page contains selected content or not..

By default, this property is false.

See also

selectionChanged()

	Access functions:
		hasSelection()

	
property iconᅟ: QIcon#
	

This property holds The icon associated with the page currently viewed..

By default, this property contains a null icon.

See also

iconChanged() iconUrl() iconUrlChanged()

	Access functions:
		icon()

	Signal iconChanged()

	
property iconUrlᅟ: QUrl#
	

This property holds The URL of the icon associated with the page currently viewed..

By default, this property contains an empty URL.

See also

iconUrlChanged() icon() iconChanged()

	Access functions:
		iconUrl()

	Signal iconUrlChanged()

	
property selectedTextᅟ: str#
	

This property holds The text currently selected..

By default, this property contains an empty string.

See also

findText() selectionChanged()

	Access functions:
		selectedText()

	
property titleᅟ: str#
	

This property holds The title of the page as defined by the HTML <title> element..

Equivalent to title() .

See also

titleChanged()

	Access functions:
		title()

	
property urlᅟ: QUrl#
	

This property holds The URL of the web page currently viewed..

Setting this property clears the view and loads the URL.

By default, this property contains an empty, invalid URL.

See also

load() urlChanged()

	Access functions:
		url()

	setUrl()

	
property zoomFactorᅟ: float#
	

This property holds The zoom factor for the view..

Valid values are within the range from 0.25 to 5.0. The default factor is 1.0.

	Access functions:
		zoomFactor()

	setZoomFactor()

	
__init__(profile[, parent=None])#
		Parameters:
		profile – QWebEngineProfile

	parent – QWidget

Constructs an empty web view using profile with the parent parent.

Note

The profile object ownership is not taken and it should outlive the view.

See also

load()

	
__init__(page[, parent=None])
		Parameters:
		page – QWebEnginePage

	parent – QWidget

Constructs a web view containing page with the parent parent.

Note

Ownership of page is not taken, and it is up to the caller to ensure it is deleted.

See also

load() setPage()

	
__init__([parent=None])
		Parameters:
	parent – QWidget

Constructs an empty web view with the parent parent.

See also

load()

	
back()#
	

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

Convenience slot that loads the previous document in the list of documents built by navigating links. Does nothing if there is no previous document.

It is equivalent to:

view.page().triggerAction(QWebEnginePage.Back)

See also

forward() pageAction()

	
createStandardContextMenu()#
		Return type:
	QMenu

Creates a standard context menu and returns a pointer to it.

	
createWindow(type)#
		Parameters:
	type – WebWindowType

	Return type:
	QWebEngineView

This function is called from the createWindow() method of the associated QWebEnginePage each time the page wants to create a new window of the given type. For example, when a JavaScript request to open a document in a new window is issued.

Note

If the createWindow() method of the associated page is reimplemented, this method is not called, unless explicitly done so in the reimplementation.

See also

createWindow()

	
findText(arg__1, arg__2, arg__3)#
		Parameters:
		arg__1 – str

	arg__2 – Combination of FindFlag

	arg__3 – object

	
findText(subString[, options={}])
		Parameters:
		subString – str

	options – Combination of FindFlag

	
static forPage(page)#
		Parameters:
	page – QWebEnginePage

	Return type:
	QWebEngineView

Returns the view if any, associated with the page.

See also

page() setPage()

	
forward()#
	

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

Convenience slot that loads the next document in the list of documents built by navigating links. Does nothing if there is no next document.

It is equivalent to:

view.page().triggerAction(QWebEnginePage.Forward)

See also

back() pageAction()

	
hasSelection()#
		Return type:
	bool

Getter of property hasSelectionᅟ .

	
history()#
		Return type:
	QWebEngineHistory

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

Returns a pointer to the view’s history of navigated web pages.

It is equivalent to:

view.page().history()

	
icon()#
		Return type:
	QIcon

Getter of property iconᅟ .

	
iconChanged(arg__1)#
		Parameters:
	arg__1 – QIcon

This signal is emitted when the icon (“favicon”) associated with the view is changed. The new icon is specified by icon.

See also

icon() iconUrl() iconUrlChanged()

Notification signal of property iconᅟ .

	
iconUrl()#
		Return type:
	QUrl

Getter of property iconUrlᅟ .

	
iconUrlChanged(arg__1)#
		Parameters:
	arg__1 – QUrl

This signal is emitted when the URL of the icon (“favicon”) associated with the view is changed. The new URL is specified by url.

See also

iconUrl() icon() iconChanged()

Notification signal of property iconUrlᅟ .

	
lastContextMenuRequest()#
		Return type:
	QWebEngineContextMenuRequest

Returns additional data about the current context menu. It is only guaranteed to be valid during the call to the contextMenuEvent() .

See also

createStandardContextMenu()

	
load(url)#
		Parameters:
	url – QUrl

Loads the specified url and displays it.

Note

The view remains the same until enough data has arrived to display the new URL.

See also

setUrl() url() urlChanged() fromUserInput()

	
load(request)
		Parameters:
	request – QWebEngineHttpRequest

Issues the specified request and loads the response.

See also

load() setUrl() url() urlChanged() fromUserInput()

	
loadFinished(arg__1)#
		Parameters:
	arg__1 – bool

This signal is emitted when a load of the page has finished. ok will indicate whether the load was successful or an error occurred.

See also

loadStarted()

	
loadProgress(progress)#
		Parameters:
	progress – int

This signal is emitted every time an element in the web view completes loading, such as an embedded image or a script. Therefore, it tracks the collective progress of loading the web view.

The current value is provided by progress and scales from 0 to 100, which is the default range of QProgressBar.

See also

loadStarted() loadFinished()

	
loadStarted()#
	

This signal is emitted when a new load of the page is started.

See also

loadProgress() loadFinished()

	
page()#
		Return type:
	QWebEnginePage

Returns a pointer to the underlying web page.

See also

setPage()

	
pageAction(action)#
		Parameters:
	action – WebAction

	Return type:
	QAction

Returns a pointer to a QAction that encapsulates the specified web action action. This function will also set a default styled icon to the QAction if it lacks one.

	
pdfPrintingFinished(filePath, success)#
		Parameters:
		filePath – str

	success – bool

This signal is emitted when printing the web page into a PDF file has finished. filePath will contain the path the file was requested to be created at, and success will be true if the file was successfully created and false otherwise.

See also

printToPdf()

	
print(printer)#
		Parameters:
	printer – QPrinter

Renders the current content of the page into a temporary PDF document, then prints it using printer.

The settings for creating and printing the PDF document will be retrieved from the printer object.

When finished the signal printFinished() is emitted with the true for success or false for failure.

It is the users responsibility to ensure the printer remains valid until printFinished() has been emitted.

Note

Printing runs on the browser process, which is by default not sandboxed.

Note

The data generation step of printing can be interrupted for a short period of time using the Stop web action.

Note

This function rasterizes the result when rendering onto printer. Please consider raising the default resolution of printer to at least 300 DPI or using printToPdf() to produce PDF file output more effectively.

	
printFinished(success)#
		Parameters:
	success – bool

This signal is emitted when printing requested with print() has finished. The parameter success is true for success or false for failure.

See also

print()

	
printRequested()#
	

This signal is emitted when the JavaScript window.print() method is called or the user pressed the print button of PDF viewer plugin. Typically, the signal handler can simply call print() .

See also

print()

	
printToPdf(filePath[, layout=QPageLayout(QPageSize(QPageSize.A4), QPageLayout.Portrait, QMarginsF())[, ranges={}]])#
		Parameters:
		filePath – str

	layout – QPageLayout

	ranges – QPageRanges

Renders the current content of the page into a PDF document and saves it in the location specified in filePath. The page size and orientation of the produced PDF document are taken from the values specified in layout, while the range of pages printed is taken from ranges with the default being printing all pages.

This method issues an asynchronous request for printing the web page into a PDF and returns immediately. To be informed about the result of the request, connect to the signal pdfPrintingFinished() .

If a file already exists at the provided file path, it will be overwritten.

See also

pdfPrintingFinished()

	
reload()#
	

Reloads the current document.

See also

stop() pageAction() loadStarted()

	
renderProcessTerminated(terminationStatus, exitCode)#
		Parameters:
		terminationStatus – RenderProcessTerminationStatus

	exitCode – int

This signal is emitted when the render process is terminated with a non-zero exit status. terminationStatus is the termination status of the process and exitCode is the status code with which the process terminated.

	
selectedText()#
		Return type:
	str

Getter of property selectedTextᅟ .

	
selectionChanged()#
	

This signal is emitted whenever the selection changes.

Note

When using the mouse to select text by left-clicking and dragging, the signal will be emitted for each new character selected, and not upon releasing the left mouse button.

See also

selectedText()

	
setContent(data[, mimeType=""[, baseUrl=QUrl()]])#
		Parameters:
		data – QByteArray

	mimeType – str

	baseUrl – QUrl

Sets the content of the web view to data. If the mimeType argument is empty, it is assumed that the content is text/plain,charset=US-ASCII.

External objects referenced in the content are located relative to baseUrl. For external objects with relative URLs to be loaded, baseUrl cannot be empty.

The data is loaded immediately; external objects are loaded asynchronously.

See also

load() setHtml() toHtml()

	
setHtml(html[, baseUrl=QUrl()])#
		Parameters:
		html – str

	baseUrl – QUrl

Sets the content of the web view to the specified html content.

baseUrl is optional and used to resolve relative URLs in the document, such as referenced images or stylesheets. For example, if html is retrieved from http://www.example.com/documents/overview.html, which is the base URL, then an image referenced with the relative URL, diagram.png, should be at http://www.example.com/documents/diagram.png.

The HTML document is loaded immediately, whereas external objects are loaded asynchronously.

When using this method, Qt WebEngine assumes that external resources, such as JavaScript programs or style sheets, are encoded in UTF-8 unless otherwise specified. For example, the encoding of an external script can be specified through the charset attribute of the HTML script tag. Alternatively, the encoding can be specified by the web server.

This is a convenience function equivalent to setContent(html, "text/html;charset=UTF-8", baseUrl).

Warning

This function works only for HTML. For other MIME types (such as XHTML or SVG), setContent() should be used instead.

Note

Content larger than 2 MB cannot be displayed, because setHtml() converts the provided HTML to percent-encoding and places data: in front of it to create the URL that it navigates to. Thereby, the provided code becomes a URL that exceeds the 2 MB limit set by Chromium. If the content is too large, the loadFinished() signal is triggered with success=false.

See also

load() setContent() toHtml() setContent()

	
setPage(page)#
		Parameters:
	page – QWebEnginePage

Makes page the new web page of the web view.

The parent QObject of the provided page remains the owner of the object. If the current page is a child of the web view, it will be deleted.

See also

page()

	
setUrl(url)#
		Parameters:
	url – QUrl

See also

url()

Setter of property urlᅟ .

	
setZoomFactor(factor)#
		Parameters:
	factor – float

See also

zoomFactor()

Setter of property zoomFactorᅟ .

	
settings()#
		Return type:
	QWebEngineSettings

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

Returns a pointer to the view or page specific settings object.

It is equivalent to:

view.page().settings()

	
stop()#
	

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

Convenience slot that stops loading the document.

It is equivalent to:

view.page().triggerAction(QWebEnginePage.Stop)

See also

reload() pageAction() loadFinished()

	
title()#
		Return type:
	str

Getter of property titleᅟ .

	
titleChanged(title)#
		Parameters:
	title – str

This signal is emitted whenever the title of the view changes.

See also

title()

	
triggerPageAction(action[, checked=false])#
		Parameters:
		action – WebAction

	checked – bool

Warning

This section contains snippets that were automatically
translated from C++ to Python and may contain errors.

Triggers the specified action. If it is a checkable action, the specified checked state is assumed.

The following example triggers the copy action and therefore copies any selected text to the clipboard.

view.triggerPageAction(QWebEnginePage.Copy)

See also

pageAction()

	
url()#
		Return type:
	QUrl

See also

setUrl()

Getter of property urlᅟ .

	
urlChanged(arg__1)#
		Parameters:
	arg__1 – QUrl

This signal is emitted when the url of the view changes.

See also

url() load()

	
zoomFactor()#
		Return type:
	float

See also

setZoomFactor()

Getter of property zoomFactorᅟ .

 Next

 PySide6.QtWebSockets

 Previous

 PySide6.QtWebEngineWidgets

 Copyright © 2024 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 (https://www.gnu.org/licenses/fdl.html) as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.

 Made with Sphinx and @pradyunsg's

 Furo

 On this page

 	QWebEngineView	QWebEngineView.hasSelectionᅟ
	QWebEngineView.iconᅟ
	QWebEngineView.iconUrlᅟ
	QWebEngineView.selectedTextᅟ
	QWebEngineView.titleᅟ
	QWebEngineView.urlᅟ
	QWebEngineView.zoomFactorᅟ
	QWebEngineView.__init__()
	QWebEngineView.back()
	QWebEngineView.createStandardContextMenu()
	QWebEngineView.createWindow()
	QWebEngineView.findText()
	QWebEngineView.forPage()
	QWebEngineView.forward()
	QWebEngineView.hasSelection()
	QWebEngineView.history()
	QWebEngineView.icon()
	QWebEngineView.iconChanged()
	QWebEngineView.iconUrl()
	QWebEngineView.iconUrlChanged()
	QWebEngineView.lastContextMenuRequest()
	QWebEngineView.load()
	QWebEngineView.loadFinished()
	QWebEngineView.loadProgress()
	QWebEngineView.loadStarted()
	QWebEngineView.page()
	QWebEngineView.pageAction()
	QWebEngineView.pdfPrintingFinished()
	QWebEngineView.print()
	QWebEngineView.printFinished()
	QWebEngineView.printRequested()
	QWebEngineView.printToPdf()
	QWebEngineView.reload()
	QWebEngineView.renderProcessTerminated()
	QWebEngineView.selectedText()
	QWebEngineView.selectionChanged()
	QWebEngineView.setContent()
	QWebEngineView.setHtml()
	QWebEngineView.setPage()
	QWebEngineView.setUrl()
	QWebEngineView.setZoomFactor()
	QWebEngineView.settings()
	QWebEngineView.stop()
	QWebEngineView.title()
	QWebEngineView.titleChanged()
	QWebEngineView.triggerPageAction()
	QWebEngineView.url()
	QWebEngineView.urlChanged()
	QWebEngineView.zoomFactor()

